The youngest Neoproterozoic mafic dyke suite in the Arabian Shield: mildly alkaline dolerites from South Jordan – their geochemistry and petrogenesis

2001 ◽  
Vol 138 (3) ◽  
pp. 309-323 ◽  
Author(s):  
G. JARRAR

The Arabian–Nubian Shield evolved through a sequence of tectonomagmatic cycles, which took place during Neoproterozoic time (1000–540 Ma). Dyke emplacement constitutes one of the conspicuous features of the Arabian–Nubian Shield, with mafic dykes being the most abundant. The investigated dykes represent the youngest Neoproterozoic mafic dykes and have been dated in Jordan at 545 ± 13 Ma. Geochemically the studied dykes are mildly alkaline, are enriched in large ion lithophile elements (LILE) and high field strength cations (HFSC), show moderate enrichment of REE, and lack Nb anomaly. These features are consistent with a predominantly extensional continental tectonic setting. Crystallization temperatures of the suite fall between 1050 and 800 °C to as low as 650 °C as deduced from pyroxene thermometry. The investigated dykes were derived from a metasomatized lithospheric mantle by 5 % modal batch partial melting of phlogopite-bearing spinel lherzolite, according to geochemical modelling. The intra-suite geochemical features are explicable by 64 % fractional crystallization of olivine, pyroxene, plagioclase and titanomagnetite and possibly other accessories like apatite at a later stage. The cumulate produced from this fractionation of the investigated dyke suite contributed to the formation of the mafic lower crust of the Arabian–Nubian Shield. Elemental ratios and petrographic evidence indicate possible minor crustal contamination of the suite. The youngest mafic dykes show striking geochemical similarities to the same generation of dolerite dykes in the adjacent countries, to transitional young basalt suites of the Main East African Rift, and to Quaternary Jordanian basalts. The youngest mafic dyke suite, the rhyolites of the Aheimir suite, and St Katherina rhyolites of Sinai represent the last igneous activity in the Arabian–Nubian Shield before the onset of the Cambrian at about 545 Ma ago.

2001 ◽  
Vol 38 (11) ◽  
pp. 1565-1578 ◽  
Author(s):  
Nancy A Van Wagoner ◽  
Matthew I Leybourne ◽  
Kelsie A Dadd ◽  
Miranda LA Huskins

The volcanic and sedimentary rocks of the Passamaquoddy Bay (PB) area of southeastern New Brunswick are part of the Silurian–Devonian Coastal Volcanic Belt (CVB), an extensive belt of bimodal volcanic rocks. The PB sequence is 4 km thick, has four cycles of mafic and felsic volcanism, and is intruded by mafic dykes at all levels. There are two ages of dykes, those related to the Late Silurian PB volcanism (PB dykes) and Mesozoic dykes (the Minister Island Dyke) related to the opening of the North Atlantic. The PB mafic dykes are subalkalic basalt to basaltic andesite, within-plate tholeiites. The dykes are moderately to highly evolved (Mg# = 66.6 to 26.6), with trends of major and trace elements typical of the fractionation of olivine, pyroxene, plagioclase, and ilmenite. The PB mafic dyke swarm comprises over 155 dykes which represent a greater range of compositions than the associated flows, suggesting that they give a more complete representation of the Late Silurian PB mafic magmas. They exhibit incompatible element characteristics best accounted for by crustal contamination. The dykes plot on a linear array away from mantle mixing lines between depleted and enriched mantle sources and toward the composition of the PB felsic units, suggesting that these felsic units are representative of partial melts and fractionates of the source contaminate. The variable TiO2 contents (1.2–4.3 wt.%) and incompatible element ratio trends plotted against a fractionation index suggest that mantle metasomatism, either fluid or melt derived, may also have influenced the mantle source of the dykes. The dykes dip steeply and have a relatively consistent strike to the north. Most dykes range in thickness from 0.5 to 2 m, but range up to 9 m. The single orientation of the dykes, along with their chemical characteristics and volume, and association with a bimodal intraplate volcanic sequence, are consistent with an extensional tectonic setting. Constraints of the regional geology suggest that this extension was associated with convergence, perhaps in a back-arc setting.


1993 ◽  
Vol 30 (6) ◽  
pp. 1110-1122 ◽  
Author(s):  
G. E. Camiré ◽  
J. N. Ludden ◽  
M. R. La Flèche ◽  
J. -P. Burg

In the northwestern Pontiac Subprovince, metavolcanic rocks are exposed within a metagraywacke sequence that is intruded by metamorphosed mafic dykes. The metavolcanics are Al-undepleted komatiites ([La/Sm]N = 0.3, [Tb/Yb]N = 0.9) and tholeiitic Fe-basalts ([La/Sm]N = 0.8 and [Tb/Yb]N = 0.8). The nearly flat chondrite-normalized distributions of high field strength elements (HFSE), Ti and P, the constant Zr/Y, Nb/Th, Ti/Zr, and Ti/P ratios, and the lack of depletion of HFSE relative to rare-earth elements (REE) in both ultramafic and mafic metavolcanics, imply that crustal assimilation and magma mixing with crustal melts were not significant during differentiation and argue against the presence of subduction-related magmatic components. Contemporaneous volcanism and sedimentation in the northwestern Pontiac Subprovince are unlikely. The metavolcanics do not show any evidence of crustal contamination and likely represent a structurally emplaced, disrupted assemblage, chemically similar to early volcanics of the adjacent southern Abitibi Subprovince.Metamorphosed mafic dykes intruding the metagraywackes are not genetically related to the metavolcanics. The dykes have high CaO, P2O5, K2O, Ba, Rb, and Sr, intermediate Cr and Ni contents, and strongly fractionated REE patterns ([La/Yb]N = 10.8). Normalized to the primitive mantle, they display pronounced negative Nb, Ta, Ti, Zr, and Hf anomalies. These amphibolites are metamorphosed equivalents of Mg-rich calc-alkaline lamprophyre dykes, most likely derived from a hybridized mantle source. Mantle metasomatism was probably related to a subduction event prior to the peak of compressional Kenoran deformation in the Pontiac Subprovince.


2020 ◽  
pp. 1-22
Author(s):  
Abdel-Fattah M Abdel-Rahman

Abstract Most tonalite–trondhjemite–granodiorite (TTG) suites are Archean–Palaeoproterozoic in age, but those of Neoproterozoic–Phanerozoic age are scarce. A rare Ediacaran high-Al TTG suite has been identified at the Fannani Igneous Complex (FIC) in the northern Arabian–Nubian Shield, which is essentially composed of amalgamated Neoproterozoic island-arc Pan-African composite terranes that contain several ophiolitic sutures. The FIC exhibits a wide range of SiO2, Al2O3, Sr and Zr, shows moderate rare earth element (REE) enrichment, and K, Ti, Nb, Y and heavy REE depletion. It is a subsolvus suite with clear orogenic affinities and strong arc-geochemical signatures. The precise U–Pb zircon thermal ionization mass spectrometry age obtained (607.4 ± 1.95 Ma) indicates oceanic subduction extended to late stages of the East African Orogeny. The FIC exhibits 87Sr/86Sr compositions of 0.70346–0.71091 (Sr(i) ratio, 0.70284), and 143Nd/144Nd of 0.51254–0.51270 (ϵNd(t) = +5.12 to +7.16), typical of modern oceanic-arc rocks (as Japan-arc basalts), and suggestive of mantle sources and island-arc settings. The FIC possesses low values of Yb (1.55 ppm), Nb (14 ppm) and Y (24 ppm), and high ratios of Sr/Y (27), Zr/Sm (46) and Nb/Ta (11.8), typical of magmas produced by anatexis of a basaltic slab. Partial melting models show that the FIC magma was generated by melting (F = 0.25–0.50) of a subducted oceanic crust transformed into eclogite, leaving 10–25% garnet in the residue. The FIC and similar complexes produced via slab melting during the closure of the Mozambique Ocean formed large juvenile belts along the East African Orogen that sutured East and West Gondwana together into a united supercontinent.


Sign in / Sign up

Export Citation Format

Share Document