Crustal geodynamics from the Archaean Bundelkhand Craton, India: constraints from zircon U–Pb–Hf isotope studies

2015 ◽  
Vol 153 (1) ◽  
pp. 179-192 ◽  
Author(s):  
L. SAHA ◽  
D. FREI ◽  
A. GERDES ◽  
J. K. PATI ◽  
S. SARKAR ◽  
...  

AbstractA comprehensive study based on U–Pb and Hf isotope analyses of zircons from gneisses has been conducted along the western part (Babina area) of the E–W-trending Bundelkhand Tectonic Zone in the central part of the Archaean Bundelkhand Craton. 207Pb–206Pb zircon ages and Hf isotopic data indicate the existence of a felsic crust at ~ 3.59 Ga, followed by a second tectonothermal event at ~ 3.44 Ga, leading to calc-alkaline magmatism and subsequent crustal growth. The study hence suggests that crust formation in the Bundelkhand Craton occurred in a similar time-frame to that recorded from the Singhbhum and Bastar cratons of the North Indian Shield.

2019 ◽  
Vol 486 (4) ◽  
pp. 446-450
Author(s):  
V. A. Zaika ◽  
A. A. Sorokin ◽  
A. P. Sorokin

This paper presents the results of U–Pb (LA–ICP–MS) and Lu–Hf ­isotope studies of detrital zircons from metasedimentary rocks of the Tokur Terrane. It has been shown that metasedimentary rocks of the Tokur and Ekimchan formations are characterized by similar age peaks of detrital zircons, which indicates a close (or same) age of these formations. The lower age of the sedimentation is determined by the age of the youngest zircons of 326–323 Ma. The upper age boundary is determined of 254–251 Ma, based on the intruded of the Late Permian granitoids. The main sources of zircons in the metasedimentary rocks of the Tokur Terrane are the igneous and metamorphic complexes of the southeast framing of the North Asia Craton. The Tokur Terrane can be considered as a fragment of the Paleozoic accretionary complex, the formation in front of the southeastern margin of the North Asia Craton.


2020 ◽  
Vol 12 (1) ◽  
pp. 764-790
Author(s):  
Amin Allah Kamali ◽  
Mohsen Moayyed ◽  
Nasir Amel ◽  
Fadaeian Mohammad ◽  
Marco Brenna ◽  
...  

AbstractThe Sungun copper–molybdenum porphyry deposit is located in the north of Varzaghan, northwestern Iran. The Sungun quartz-monzonite is the oldest mineralized intrusive body in the region and was emplaced during the Early Miocene. Eight categories of the late and unmineralized dykes, which include quartz diorite, gabbrodiorite, diorite, dacite, microdiorite and lamprophyre (LAM), intrude the ore deposit. The main mineral phases in the dykes include plagioclase, amphibole and biotite, with minor quartz and apatite and secondary chlorite, epidote, muscovite and sericite. The composition of plagioclase in the quartz diorite dykes (DK1a, DK1b and DK1c) varies from albite-oligoclase to andesine and oligoclase to andesine; in the diorite, it varies from andesine to labradorite; in the LAM, from albite to oligoclase; and in the microdiorite (MDI), it occurs as albite. Amphibole compositions are consistent with classification as hornblende or calcic amphibole. Based on their AlIV value (less than 1.5), amphibole compositions are consistent with an active continental margin affinity. The average percentage of pistacite (Ps) in epidotes formed from alteration of plagioclase and ferromagnesian minerals is 27–23% and 25–30%, respectively. Thermobarometric studies based on amphibole and biotite indicate approximate dyke crystallization temperature of 850–750℃, pressure of 231–336 MPa and high fO2 (>nickel-nickel-oxide buffer). The range of mineral compositions in the postmineralization dyke suite is consistent with a genetic relationship with the subduction of the Neotethys oceanic crust beneath the continental crust of the northwest part of the Central Iranian Structural Zone. Despite the change from calc-alkaline to alkaline magmatism, the dykes are likely related to the late stages of magmatic activity in the subduction system that also generated the porphyry deposit.


2004 ◽  
Vol 148 (1) ◽  
pp. 79-103 ◽  
Author(s):  
Jianping Zheng ◽  
W. L. Griffin ◽  
Suzanne Y. O’Reilly ◽  
Fengxiang Lu ◽  
Chunmei Yu ◽  
...  

2012 ◽  
Vol 27 (5) ◽  
pp. 445-451 ◽  
Author(s):  
Jamil D. Bayram ◽  
Shawki Zuabi ◽  
Mazen J. El Sayed

AbstractIntroductionEstimating the number of ambulances needed in trauma-related Multiple Casualty Events (MCEs) is a challenging task.Hypothesis/ProblemEmergency medical services (EMS) regions in the United States have varying “best practices” for the required number of ambulances in MCE, none of which is based on metric criteria. The objective of this study was to estimate the number of ambulances required to respond to the scene of trauma-related MCE in order to initiate treatment and complete the transport of critical (T1) and moderate (T2) patients. The proposed model takes into consideration the different transport times and capacities of receiving hospitals, the time interval from injury occurrence, the number of patients per ambulance, and the pre-designated time frame allowed from injury until the transfer care of T1 and T2 patients.MethodsThe main theoretical framework for this model was based on prehospital time intervals described in the literature and used by EMS systems to evaluate operational and patient care issues. The North Atlantic Treaty Organization (NATO) triage categories (T1-T4) were used for simplicity.ResultsThe minimum number of ambulances required to respond to the scene of an MCE was modeled as being primarily dependent on the number of critical patients (T1) present at the scene any particular time. A robust quantitative model was also proposed to dynamically estimate the number of ambulances needed at any time during an MCE to treat, transport and transfer the care of T1 and T2 patients.ConclusionA new quantitative model for estimation of the number of ambulances needed during the prehospital response in trauma-related multiple casualty events has been proposed. Prospective studies of this model are needed to examine its validity and applicability.BayramJD, ZuabiS, El SayedMJ. Disaster metrics: quantitative estimation of the number of ambulances required in trauma-related multiple casualty events. Prehosp Disaster Med.2012;27(5):1-7.


Sign in / Sign up

Export Citation Format

Share Document