Spot U-Pband Hf isotope analyses of detrital zircons from the khondalites in the western block of the North China craton

2005 ◽  
Author(s):  
Xiaoping Xia
2009 ◽  
Vol 146 (5) ◽  
pp. 701-716 ◽  
Author(s):  
XIAOPING XIA ◽  
MIN SUN ◽  
GUOCHUN ZHAO ◽  
FUYUAN WU ◽  
LIEWEN XIE

AbstractTwo types of metasedimentary rocks occur in the Trans-North China Orogen of the North China Craton. One type consists of highly metamorphosed supracrustal rocks with protoliths of mature cratonic shale, called khondalites, as found in the Lüliang Complex; rocks of the other type are also highly metamorphosed but less mature, as represented by the Wanzi supracrustal assemblage in the Fuping Complex. U–Pb isotopic data for detrital zircons from khondalites show a provenance dominated by 1.9–2.1 Ga Palaeoproterozoic rocks. These detrital zircons display a wide range of εHfvalues from −16.0 to +9.2 and give Hf isotopic model ages mostly around 2.3 Ga. The high positive εHfvalues approach those for the depleted mantle at 2.1 Ga, highlighting a juvenile crustal growth event in Palaeoproterozoic times. Hf isotopic data also imply thatc.2.6 Ga old crustal material was involved in the Palaeoproterozoic magmatic event. These data are similar to those for the khondalitic rocks from the interior of the Western Block of the North China Craton, suggesting a common provenance. In contrast, other metasedimentary rocks in the Trans-North China Orogen, such as the Wanzi supracrustal assemblage in the Fuping Complex, have a source region with both Palaeoproterozoic and Archaean rocks. Their detrital zircon Hf isotopic data indicate reworking of old crustal material and a lack of significant juvenile Palaeoproterozoic magmatic input. These rocks are similar to the coevally deposited meta-sedimentary rocks in the interior of the Eastern Block. We propose that the Lüliang khondalites were deposited on the eastern margin of the Western Block in a passive continental margin environment and were thrust eastward later during collision with the Eastern Block. Other metasedimentary rocks in the Trans-North China Orogen were deposited on the western margin of the Eastern Block in a continental arc environment. Our data support the eastward subduction model for the Palaeoproterozoic tectonic evolution of the North China Craton.


Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


2004 ◽  
Vol 148 (1) ◽  
pp. 79-103 ◽  
Author(s):  
Jianping Zheng ◽  
W. L. Griffin ◽  
Suzanne Y. O’Reilly ◽  
Fengxiang Lu ◽  
Chunmei Yu ◽  
...  

2020 ◽  
pp. 1-16
Author(s):  
Houxiang Shan ◽  
Mingguo Zhai ◽  
RN Mitchell ◽  
Fu Liu ◽  
Jinghui Guo

Abstract Whole-rock major and trace elements and Hf isotopes of magmatic zircons of tonalite–trondhjemite–granodiorite (TTG) rocks with different ages (2.9, 2.7 and 2.5 Ga) from the three blocks (the Eastern Block, Western Block and Trans-North China Orogen) of the North China Craton were compiled to investigate their respective petrogenesis, tectonic setting and implications for crustal growth and evolution. Geochemical features of the 2.5 Ga TTGs of the Eastern Block require melting of predominant rutile-bearing eclogite and subordinate garnet-amphibolite at higher pressure, while the source material of the 2.7 Ga TTGs is garnet-amphibolite or granulite at lower pressure. The 2.5 Ga TTGs have high Mg#, Cr and Ni, negative Nb–Ta anomalies and a juvenile basaltic crustal source, indicating derivation from the melting of a subducting slab. In contrast, features of the 2.7 Ga TTGs suggest generation from melting of thickened lower crust. The 2.5 and 2.7 Ga TTGs in the Trans-North China Orogen were formed at garnet-amphibolite to eclogite facies, and the source material of the 2.5 Ga TTGs in the Western Block is most likely garnet-amphibolite or eclogite. The 2.5 Ga TTGs in the Trans-North China Orogen and Western Block were generated by the melting of a subducting slab, whereas the 2.7 Ga TTGs in the Trans-North China Orogen derived from melting of thickened lower crust. The Hf isotopic data suggest both the 2.5 and 2.7 Ga TTG magmas were involved with contemporary crustal growth and reworking. The two-stage model age (TDM2) histograms show major crustal growth between 2.9 and 2.7 Ga for the whole North China Craton.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 361 ◽  
Author(s):  
Renyu Zeng ◽  
Jianqing Lai ◽  
Xiancheng Mao ◽  
Bin Li ◽  
Jiandong Zhang ◽  
...  

The Alxa block is located in the southwestern margin of the North China Craton. The Paleoproterozoic tectonic evolution, crustal growth and tectonic affinity of the block remain unknown or controversial. The Longshoushan (LS) area is one of the few areas that outcrop Paleoproterozoic to crystalline basement rocks in the Alxa Block. In this study, we preset whole-rock geochemistry, zircon U–Pb geochronology and Lu–Hf isotope data from metagabbro, metadiorite, quartz syenite, granitic leucosome and pegmatoid leucosome in the LS area. These rocks all are enriched in LREE and LILE, and depleted in HREE and HFSE. Eight new LA-ICP-MS zircon U–Pb ages yielded three magmatic ages of 2044 Ma, 2029 Ma and 1940 Ma, and three metamorphic ages of 1891 Ma, 1848 Ma and 1812 Ma. Lu–Hf analyses reveal that the magmatic zircons and anatectic/metamorphic zircons from all the rock types are characterized by positive εHf(t) (−0.16 to 10.89) and variable εHf(t) (−11.21 to 6.24), respectively. Based on the previous studies and our new data, we conclude that the LS area experienced three magmatic events (2.5–2.45 Ga, ~2.1–2.0 Ga and ~1.95–1.91 Ga) and three regional metamorphism/anataxis events (~1.93–1.89 Ga, ~1.86–1.84 Ga and ~1.81 Ga) in Paleoproterozoic. The age–Hf isotope data establishes two main crustal growth events at ~2.9–2.5 Ga and ~2.2–2.0 Ga in the LS area. These data indicate that the LS area experienced intraplate extensional setting in the middle Paleoproterozoic, and continental subduction, collision and exhumation in the late Paleoproterozoic. Combining the geochronological framework and tectonic evolution, we suggest that the Alxa Block is part of the Khondalite Belt.


Sign in / Sign up

Export Citation Format

Share Document