Geochemistry of upper Palaeozoic ‘thin-layer’ limestones in the southern North China Craton: implications for closure of the northeastern Palaeotethys Ocean

2021 ◽  
pp. 1-17
Author(s):  
Jun Li ◽  
Herong Gui ◽  
Luwang Chen ◽  
Pei Fang ◽  
Xiaoping Li ◽  
...  

Abstract During the late Palaeozoic Era, a series of related marine strata dominated by multi-layer limestones were deposited in the southern North China Craton. In order to gain new insights into the systematic geochemistry of the carbonate succession of the representative formation (Taiyuan Formation), we examined 59 limestone samples collected from the Huaibei Coal Basin (HCB), with a view towards quantitatively determining the major and trace elements and stable isotope compositions. The data obtained can provide essential evidence for reconstruction of the depositional palaeo-environment and tectonic setting of the Taiyuan Formation. Both X-ray diffraction analyses and palaeoredox proxies (e.g. V/Cr, V/(V + Ni) and authigenic U) indicated that the limestone layers were deposited in an oxic–dysoxic zone, with calcite as the main component. Moreover, palaeomagnetic evidence provided support for the conclusion that these limestones were laid down within an epicontinental sea depositional environment under a warm or hot palaeoclimate during the transition between late Carboniferous and early Permian time. Additionally, evidence obtained from our analyses of trace and rare earth elements revealed that the tectonic setting of the Taiyuan Formation (L1–L5) in the HCB transited from an open ocean to a passive continental margin, thereby indicating that this transformation stemmed from the subduction closure of the northeastern Palaeotethys Ocean. The findings of this study would be of interest to those working on the upper Palaeozoic marine strata in the southern North China Craton.

2020 ◽  
pp. 1-16
Author(s):  
Houxiang Shan ◽  
Mingguo Zhai ◽  
RN Mitchell ◽  
Fu Liu ◽  
Jinghui Guo

Abstract Whole-rock major and trace elements and Hf isotopes of magmatic zircons of tonalite–trondhjemite–granodiorite (TTG) rocks with different ages (2.9, 2.7 and 2.5 Ga) from the three blocks (the Eastern Block, Western Block and Trans-North China Orogen) of the North China Craton were compiled to investigate their respective petrogenesis, tectonic setting and implications for crustal growth and evolution. Geochemical features of the 2.5 Ga TTGs of the Eastern Block require melting of predominant rutile-bearing eclogite and subordinate garnet-amphibolite at higher pressure, while the source material of the 2.7 Ga TTGs is garnet-amphibolite or granulite at lower pressure. The 2.5 Ga TTGs have high Mg#, Cr and Ni, negative Nb–Ta anomalies and a juvenile basaltic crustal source, indicating derivation from the melting of a subducting slab. In contrast, features of the 2.7 Ga TTGs suggest generation from melting of thickened lower crust. The 2.5 and 2.7 Ga TTGs in the Trans-North China Orogen were formed at garnet-amphibolite to eclogite facies, and the source material of the 2.5 Ga TTGs in the Western Block is most likely garnet-amphibolite or eclogite. The 2.5 Ga TTGs in the Trans-North China Orogen and Western Block were generated by the melting of a subducting slab, whereas the 2.7 Ga TTGs in the Trans-North China Orogen derived from melting of thickened lower crust. The Hf isotopic data suggest both the 2.5 and 2.7 Ga TTG magmas were involved with contemporary crustal growth and reworking. The two-stage model age (TDM2) histograms show major crustal growth between 2.9 and 2.7 Ga for the whole North China Craton.


2020 ◽  
Vol 192 ◽  
pp. 104269 ◽  
Author(s):  
Jin Zhang ◽  
Junfeng Qu ◽  
Beihang Zhang ◽  
Heng Zhao ◽  
Pengfei Niu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document