The Exeter Group, south Devon, England: a contribution to the early post-Variscan stratigraphy of northwest Europe

1997 ◽  
Vol 134 (2) ◽  
pp. 177-197 ◽  
Author(s):  
R. A. EDWARDS ◽  
G. WARRINGTON ◽  
R. C. SCRIVENER ◽  
N. S. JONES ◽  
H. W. HASLAM ◽  
...  

The lower part of the post-Variscan succession around Exeter, south Devon, England, comprises some 800 m of breccias, with subordinate sandstones and mudstones, which rest upon Devonian and Carboniferous rocks folded during the Variscan Orogeny and are overlain, disconformably, by the Aylesbeare Mudstone Group (Early Triassic?). These deposits comprise the most westerly of the early post-Variscan successions preserved onshore in northwest Europe and lie to the south of the Variscan Deformation Front; they are assigned to the Exeter Group (new term). Geochronological and palaeontological studies, in conjunction with detailed geological mapping, show that the constituent formations comprise a lower (Late Carboniferous(?)–Early Permian) sequence separated from an upper (Late Permian) sequence by an unconformity which represents an hiatus with a duration of at least 20 m.y. The lower sequence contains volcanic rocks dated at between 291 and 282 Ma (Early Permian) and pre-dates intrusion of the nearby Dartmoor Granite (280 Ma). In the overlying, palynologically-dated, Late Permian sequence, older breccias contain clasts of the Dartmoor Granite aureole rocks, and younger ones contain clasts of that granite. The lower sequence occurs mainly within the Crediton Trough, an east–west trending, partly fault-bounded, sedimentary basin that probably formed by extensional reactivation of a Variscan thrust. Breccias in this sequence formed largely on alluvial fans; the common occurrence of debris flows and a down-fan passage from gravity flows into fluvially deposited sediments is typical of deposition on semi-arid fans. The upper (Late Permian) sequence is more widespread but includes similar deposits overlain, at the top of the Exeter Group, by aeolian dune and interdune deposits. Correlation within the laterally variable facies associations which comprise these sequences has been achieved using a combination of sedimentary facies analysis, sedimentary geochemistry, and petrographical and geochemical clast typing. The stratigraphy revealed within the Exeter Group is broadly comparable with that recognized in the early post-Variscan Rotliegend successions elsewhere in Europe. This similarity may, however, be deceptive; the upper part of the Exeter Group may be coeval with the Zechstein, and apparently correlatable major unconformities in the group and the Rotliegend may reflect different events in the Variscan fold-belt and Variscan Foreland areas, respectively.

2013 ◽  
Vol 63 (2) ◽  
pp. 175-199 ◽  
Author(s):  
Artur Kędzior ◽  
Mihai E. Popa

Abstract Kędzior, A. and Popa, E.M. 2013. Sedimentology of the Early Jurassic terrestrial Steierdorf Formation in Anina, Colonia Cehă Quarry, South Carpathians, Romania. Acta Geologica Polonica, 63 (2), 175-199. Warszawa. The continental, coal bearing Steierdorf Formation, Hettangian - Sinemurian in age, is included in the Mesozoic cover of the Reşiţa Basin, Getic Nappe, South Carpathians, Romania. The Steierdorf Formation can be studied in Anina, a coal mining center and an exceptional locality for Early Jurassic flora and fauna, occurring in the middle of the Reşiţa Basin. This paper presents the results of sedimentological, stratigraphical and paleobotanical researches undertaken in Colonia Cehă open cast mine in Anina, where the Steierdorf Formation outcrops widely. Several sedimentary facies associations have been described, these associations permitting the reconstruction of various depositional systems such as alluvial fans, braided and meandering river systems, as well as lacustrine and coal generating marsh systems of the Steierdorf Formation. The sedimentary associations recorded within the Steierdorf Formation show a gradual fining upward trend, pointing to a rising marine water table and a decreasing relief within the source area.


1992 ◽  
Vol 29 (10) ◽  
pp. 2249-2265 ◽  
Author(s):  
W. Mueller ◽  
J. A. Donaldson

Sedimentation in the Archean Abitibi greenstone belt occurred during four depositional episodes: (i) sedimentary cycle 1, 2730–2720 Ma; (ii) sedimentary cycle 2, 2715–2705 Ma; (iii) sedimentary cycle 3, 2700–2687 Ma; and (iv) sedimentary cycle 4, 2685–2675 Ma. Records of the first two sedimentary cycles are preserved in basins within the northern volcanic zone, whereas basins formed during the latter two sedimentary cycles are located within the southern volcanic zone of the Abitibi belt. Sedimentary cycles 1 and 3 represent deep-water facies, as indicated by turbidites, resedimented conglomerates, pelagic sediments, and ubiquitous iron-formations; subaerial deposits have not been identified. In contrast, sedimentary cycles 2 and 4 show a prevalence of fluvial to shallow-water marine and (or) lacustrine deposits. Tectono-magmatic influence on sedimentation during cycles 2 and 4 is documented by (i) the presence of numerous unconformities underlain by plutonic and volcanic rocks; (ii) locally voluminous shoshonitic and calc-alkaline volcanic rocks; (iii) abundance of plutonic detritus; (iv) rapid vertical and lateral facies changes; and (v) repetition of successions of large-scale (50–250 m thick) alluvial and shallow-water deposits. Sedimentary cycle 1 represents incipient arc basins dominated by volcaniclastic debris, whereas cycle 2 reflects unroofing of arc volcanoes down to the plutonic roots. The sedimentary basins of cycle 3 have been tentatively interpreted as basins connecting arc terranes, within which small extensional cycle 4 basins of the successor or pull-apart type developed. The sedimentary facies associations, the tectono-magmatic influence on sedimentation, the chronological basin evolution, and overall southward younging of the basins invite comparison with modern island arcs formed by plate-tectonic processes.


1992 ◽  
Vol 13 (1) ◽  
pp. 87-96 ◽  
Author(s):  
D. B. Smith ◽  
J. C. M. Taylor ◽  
R. S. Arthurton ◽  
M. E. Brookfield ◽  
K. W. Glennie

AbstractPermian strata in the British Isles crop out mainly in northern and central England but are extensive in the subsurface both on land and in several adjoining offshore areas. Their base is defined as in Smith et al. (1974) and their top is within red beds, overlying the Zechstein evaporites.We emphasize that both the base and the top of the nominally Permian rocks lie in continental strata almost devoid of stratigraphically useful fossils and that, accordingly, these boundaries are only doubtfully correlated with internationally acceptable biostratigraphic standards.Subdivision of British Permian strata into Lower and Upper series follows the traditional view summarized by Smith et al. (1974). The junction between the series is taken at the incoming of marine strata in northern England and adjoining offshore areas, and at approximately equivalent levels in continuous continental sequences elsewhere; recent limited palynological studies suggest that the early Permian-late Permian transition adopted here and in most of northwest Europe may be mid or late Kazanian or even Tatarian in age which is somewhat younger than the base-Kazanian/Ufimian position taken in more continuous marine sequences.There has been no comprehensive revision of the stratigraphy and nomenclature of early Permian strata in and around the British Isles since the work of Smith et al. (1974) and Rhys (1974), but these aspects of the early Permian continental deposits of several cuvettes and inland drainage basins in southwest Scotland were reviewed by Brookfield (1978) and the age of continental deposits in the Elgin area was reconsidered


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Author(s):  
Jesper Kresten Nielsen ◽  
Nils-Martin Hanken

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Hanken, N.-M. (2002). Late Permian carbonate concretions in the marine siliciclastic sediments of the Ravnefjeld Formation, East Greenland. Geology of Greenland Survey Bulletin, 191, 126-132. https://doi.org/10.34194/ggub.v191.5140 _______________ This investigation of carbonate concretions from the Late Permian Ravnefjeld Formation in East Greenland forms part of the multi-disciplinary research project Resources of the sedimentary basins of North and East Greenland (TUPOLAR; Stemmerik et al. 1996, 1999). The TUPOLAR project focuses on investigations and evaluation of potential hydrocarbon and mineral resources of the Upper Permian – Mesozoic sedimentary basins. In this context, the Upper Permian Ravnefjeld Formation occupies a pivotal position because it contains local mineralisations and has source rock potential for hydrocarbons adjacent to potential carbonate reservoir rocks of the partly time-equivalent Wegener Halvø Formation (Harpøth et al. 1986; Surlyk et al. 1986; Stemmerik et al. 1998; Pedersen & Stendal 2000). A better understanding of the sedimentary facies and diagenesis of the Ravnefjeld Formation is therefore crucial for an evaluation of the economic potential of East Greenland.


2021 ◽  
Author(s):  
Benoit Deffontaines ◽  
Kuo-Jen Chang ◽  
Samuel Magalhaes ◽  
Gérardo Fortunato

<p>Volcanic areas in the World are often difficult to map especially in a structural point of view as (1) fault planes are generally covered and filled by more recent lava flows and (2) volcanic rocks have very few tectonic striations. Kuei-Shan Tao (11km from Ilan Plain – NE Taiwan) is a volcanic island, located at the soutwestern tip of the South Okinawa trough (SWOT). Two incompatible geological maps had been already published both lacking faults and structural features (Hsu, 1963 and Chiu et al., 2010). We propose herein not only to up-date the Kuei-Shan Tao geological map with our high resolution dataset, but also to create the Kuei-Shan Tao structural scheme in order to better understand its geological and tectonic history.</p><p>Consequently, we first acquired aerial photographs from our UAS survey and get our new UAS high resolution DTM (HR UAS-DTM hereafter) with a ground resolution <10cm processed through classical photogrammetric methods. Taking into account common sense geomorphic and structural interpretation and reasoning deduced form our HR UAS-DTM, and the outcropping lithologies situated all along the shoreline, we have up-dated the Kuei-Shan Tao geological mapping and its major structures. To conclude, the lithologies (andesitic lava flows and pyroclastic falls) and the new structural scheme lead us to propose a scenario for both the construction as well as the dismantling of Kuei-Shan Tao which are keys for both geology and geodynamics of the SWOT.</p>


2015 ◽  
Vol 45 (2) ◽  
pp. 243-258 ◽  
Author(s):  
Juliana Okubo ◽  
Ricardo Lykawka ◽  
Lucas Veríssimo Warren ◽  
Julia Favoreto ◽  
Dimas Dias-Brito

<p>Carbonate rocks from the Macaé Group (Albian) represent an example of carbonate sedimentation related to the drift phase in Campos Basin. This study presents depositional features, integrating them with diagenetic and stratigraphic aspects of the Macaé Group carbonates including the upper part of the Quissamã Formation and the lower part of the Outeiro Formation. Macroscopic analyses in cores and microscopic ones in thin sections allowed the recognition of eleven sedimentary facies - nine of them corresponding to the Quissamã Formation and two of them representing the Outeiro Formation. These facies were grouped into five facies associations. Oolitic grainstones and oncolitic grainstones are interpreted to be deposited in shallow depth probably in shoals above the fair weather wave base. The interbanks between shoals were formed in less agitated waters and characterized by deposition of peloidal bioclastic packstones and wackestones representative of sedimentation in calm waters. Bioclastic packstones and oolitic packstones/wackestones represent allochthonous deposits related to the beginning of the regional drowning that occur in upper Quissamã Formation. Pithonellids wackestones and bioclastic wackestones with glauconite are related to deep water deposits, characteristics of the Outeiro Formation. Post-depositional features revealed the action of diagenetic processes as, micritization, cimentation, dissolution, compaction, dolomitization and recrystallization occurred during the eo- and mesodiagenesis phases. Vertical facies analysis suggests shallowing upward cycles stacked in a sequence progressively deeper towards the top (from the Quissamã Formation to the Outeiro Formation).</p>


Sign in / Sign up

Export Citation Format

Share Document