Glutamate and glutamine metabolism in tissues of developing lambs

1983 ◽  
Vol 101 (2) ◽  
pp. 265-273 ◽  
Author(s):  
Jennifer M. Pell ◽  
Julia Tooley ◽  
Marjorie K. Jeacock ◽  
D. A. L. Shepherd

SUMMARYThe activities of glutamine synthetase, phosphate-dependent glutaminase, phosphate-independent glutaminase, glutamate dehydrogenase, γ-glutamyl transferase and glutamine-oxo-acid aminotransferase were assayed in liver, kidney cortex, brain (cerebral hemispheres), spleen, skeletal muscle and ileum obtained from lambs of 100–260 days conceptual age. A curve was fitted to each set of data relating enzyme activity and conceptual age.In the ileum, glutaminase and γ-glutamyl transferase activities declined during development. Glutamine synthetase activity in the spleen increased markedly after birth, whereas glutamate dehydrogenase activity declined as rumen function was established. In the liver, glutamate dehydrogenase and glutamine synthetase activities were highest in suckling lambs and there was a gradual increase in hepatic γ-glutamyl transferase activity throughout the period studied. The activity of phosphate-dependent glutaminase was lowest in the kidney cortex of ruminating lambs but renal activities of glutamate dehydrogenase, phosphate-independent glutaminase, glutamine synthetase and γ-glutamyl transferase were highest in ruminating lambs. In skeletal muscle, a gradual increase in glutamine synthetase activity occurred after 180 days conceptual age, whereas there was no detectable glutaminase activity in ruminating lambs. In the brain, there was an increase in glutamate dehydrogenase, phosphatedependent glutaminase and glutamine synthetase activities during the foetal and early suckling periods, whereas γ-glutamyl transferase activity increased throughout the period studied.Glutamine-oxo-acid aminotransferase activity was not detected in any of the tissues studied. Phosphate-independent glutaminase activity was always less than 10% of phosphate-dependent glutaminase activity and therefore must have a minor role in the metabolism of glutamine in lambs.A consideration of the relative activities of the enzymes at different stages of development indicated that the ileum, spleen, liver, kidney cortex and brain have a substantial potential for glutamine utilization during foetal life. As a lamb matures after birth, there are changes in the metabolism of glutamate and glutamine which indicate that there is a greater potential for net glutamine synthesis in older lambs. This could be associated with the need for detoxification of ammonia in ruminating lambs.

Nutrition ◽  
2006 ◽  
Vol 22 (7-8) ◽  
pp. 778-785 ◽  
Author(s):  
Carole Pinel ◽  
Véronique Coxam ◽  
Michelle Mignon ◽  
Daniel Taillandier ◽  
Christine Cubizolles ◽  
...  

1989 ◽  
Vol 257 (6) ◽  
pp. E885-E894 ◽  
Author(s):  
T. B. Kelso ◽  
C. R. Shear ◽  
S. R. Max

Glutamine synthesis and utilization were studied in the plantaris muscle after removal of its functional synergists, the soleus and gastrocnemius muscles. Rat plantaris muscle was compared with unoperated controls at 7, 14, and 30 days after synergist ablation and induction of hypertrophy. Glutamine synthetase activity increased from 6.17 +/- 1.77 to 33.92 +/- 2.23 nmol.h-1.mg protein-1, and glutaminase activities increased from 98.63 +/- 23.05 to 478.70 +/- 64.17 nmol.h-1.mg protein-1 7 days after surgery and remained elevated at 14 and 30 days. Sham-operated controls examined 7 days after surgery did not exhibit significantly increased glutamine synthetase activity. Histological examination revealed a large proliferation of connective tissue cells, as well as cells involved in tissue repair and inflammation; this influx was maximal 1 wk after surgery. The activity of the oxidative enzymes of the pentose phosphate pathway increased from 3.08 +/- 4.31 to 20.86 +/- 1.13 nmol.min-1.mg protein-1 1 wk after surgery. The time course of changes in pentose phosphate pathway enzymes was similar to that of the increases in glutamine synthetase, glutaminase, and cellular infiltration. Increases in muscle wet weight followed a different time course than changes in glutamine synthetase, glutaminase, and pentose phosphate pathway activities. It is concluded that the initial increases in plantaris muscle weight are probably due to edema, connective tissue proliferation, and cells involved in tissue repair and inflammation. The increase in glutamine synthetase activity appears to occur in skeletal muscle, whereas the changes in glutaminase and pentose phosphate pathway activities appear to represent infiltrating inflammatory cells. Furthermore, the increase in glutamine synthetase activity may serve to support the infiltrating cells, which appear to lack substantial capacity for glutamine production. These results represent a functional relationship between skeletal muscle glutamine synthesis and utilization by cells mediating inflammation and connective tissue repair and synthesis.


1983 ◽  
Vol 216 (2) ◽  
pp. 523-525 ◽  
Author(s):  
P A King ◽  
L Goldstein ◽  
E A Newsholme

Metabolic acidosis stimulates the rate of glutamine release from muscle, and this in turn is used by the kidney in acid-base balance. NH4Cl, HCl or diabetic ketoacidosis increases the maximum activity of glutamine synthetase in skeletal muscle. Starvation and administration of adrenal steroids also increase the activity of the enzyme in muscle.


1993 ◽  
Vol 265 (6) ◽  
pp. E935-E942 ◽  
Author(s):  
L. B. Tadros ◽  
N. M. Willhoft ◽  
P. M. Taylor ◽  
M. J. Rennie

The effects of deprivation and supplementation of exogenous glutamine (0.06 and 2.2 mM in the culture medium, respectively) were studied in mononucleated myoblasts and in multinucleated myotubes. Myoblasts cultured in glutamine-deprived medium showed reductions in plating efficiency and myotube fusion index. Myotubes grown in glutamine-supplemented cultures had higher intracellular glutamine concentrations than those grown in glutamine-deprived medium (67 +/- 4.2 vs. 46 +/- 3.6 nmol/mg cell protein, respectively) and glutamine-supplemented myotubes utilized glutamine, whereas glutamine-deprived myotubes released it. Glutamine deprivation for 12 h caused a significant, cycloheximide-blockable increase in the capacity for glutamine uptake via system Nm in both myoblasts and myotubes (maximum velocity increases of 23 +/- 5.3 and 35 +/- 4.2%, respectively), which was reversed by glutamine replenishment. Depriving myotubes of glutamine did not alter the kinetics of uptake of amino acid transport systems A, ASC, or L. Glutamine deprivation resulted in a threefold increase in glutamine synthetase activity, whereas glutaminase activity remained unchanged. System Nm and glutamine synthetase appear to undergo adaptive upregulation in glutamine-deprived muscle cells to compensate for the reduced exogenous glutamine supply.


1969 ◽  
Vol 115 (4) ◽  
pp. 769-775 ◽  
Author(s):  
J. A. Pateman

1. Aspergillus nidulans, Neurospora crassa and Escherichia coli were grown on media containing a range of concentrations of nitrate, or ammonia, or urea, or l-glutamate, or l-glutamine as the sole source of nitrogen and the glutamate dehydrogenate and glutamine synthetase of the cells measured. 2. Aspergillus, Neurospora and Escherichia coli cells, grown on l-glutamate or on high concentrations of ammonia or on high concentrations of urea, possessed low glutamate dehydrogenase activity compared with cells grown on other nitrogen sources. 3. Aspergillus, Neurospora and Escherichia coli cells grown on l-glutamate possessed high glutamine synthetase activity compared with cells grown on other nitrogen sources. 4. The hypothesis is proposed that in Aspergillus, Neurospora and Escherichia colil-glutamate represses the synthesis of glutamate dehydrogenase and l-glutamine represses the synthesis of glutamine synthetase. 5. A comparison of the glutamine-synthesizing activity and the γ-glutamyltransferase activity of glutamine synthetase in Aspergillus and Neurospora gave no indication that these fungi produce different forms of glutamine synthetase when grown on ammonia or l-glutamate as nitrogen sources.


2003 ◽  
Vol 373 (2) ◽  
pp. 357-368 ◽  
Author(s):  
Barbara MONTANINI ◽  
Marco BETTI ◽  
Antonio J. MÁRQUEZ ◽  
Raffaella BALESTRINI ◽  
Paola BONFANTE ◽  
...  

Nitrogen retrieval and assimilation by symbiotic ectomycorrhizal fungi is thought to play a central role in the mutualistic interaction between these organisms and their plant hosts. Here we report on the molecular characterization of the key N-assimilation enzyme glutamine synthetase from the mycorrhizal ascomycete Tuber borchii (TbGS). TbGS displayed a strong positive co-operativity (n=1.7±0.29) and an unusually high S0.5 value (54±16 mM; S0.5 is the substrate concentration value at which v=½Vmax) for glutamate, and a correspondingly low sensitivity towards inhibition by the glutamate analogue herbicide phosphinothricin. The TbGS mRNA, which is encoded by a single-copy gene in the Tuber genome, was up-regulated in N-starved mycelia and returned to basal levels upon resupplementation of various forms of N, the most effective of which was nitrate. Both responses were accompanied by parallel variations of TbGS protein amount and glutamine synthetase activity, thus indicating that TbGS levels are primarily controlled at the pre-translational level. As revealed by a comparative analysis of the TbGS mRNA and of the mRNAs for the metabolically related enzymes glutamate dehydrogenase and glutamate synthase, TbGS is not only the sole messenger that positively responds to N starvation, but also the most abundant under N-limiting conditions. A similar, but even more discriminating expression pattern, with practically undetectable glutamate dehydrogenase mRNA levels, was observed in fruitbodies. The TbGS mRNA was also found to be expressed in symbiosis-engaged hyphae, with distinctively higher hybridization signals in hyphae that were penetrating among and within root cells.


1977 ◽  
Vol 73 (2) ◽  
pp. 300-310 ◽  
Author(s):  
J E Vorhaben ◽  
J W Campbell

Glutamine synthetase (EC 6.3.1.2) was localized within the matrix compartment of avian liver mitochondria. The submitochondrial localization of this enzyme was determined by the digitonin-Lubrol method of Schnaitman and Greenawalt (35). The matrix fraction contained over 74% of the glutamine synthetase activity and the major proportion of the matirx marker enzymes, malate dehydrogenase (71%), NADP-dependent isocitrate dehydrogenase (83%), and glutamate dehydrogenase (57%). The highest specific activities of these enzymes were also found in the matrix compartment. Oxidation of glutamine by avian liver mitochondria was substantially less than that of glutamate. Bromofuroate, an inhibitor of glutamate dehydrogenase, blocked oxidation of glutamate and of glutamine whereas aminoxyacetate, a transaminase inhibitor, had little or no effect with either substrate. These results indicate that glutamine metabolism is probably initiated by the conversion of glutamine to glutamate rather than to an alpha-keto acid. The localization of a glutaminase activity within avian liver mitochondria plus the absence of an active mitochondrial glutamine transaminase is consistent with the differential effects of the transaminase and glutamate dehydrogenase inhibitors. The high glutamine synthetase activity (40:1) suggests that mitochondrial catabolism of glutamine is minimal, freeing most of the glutamine synthesized for purine (uric acid) biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document