Effect of nitrogen on nodulation and yield of soya beans under two systems of production in Sudan

1987 ◽  
Vol 108 (2) ◽  
pp. 259-265
Author(s):  
F. M. Khalifa

SummaryTwo experiments were run over a 3-year period in the central rainlands of Sudan under two systems of production, rainfed and irrigated, to assess the effects of system of production, inoculation and nitrogen fertilizers on plant and nodule development and grain yield of soya beans. Nodulated plants could fix more than 80 kg N/ha under irrigation whereas under rainfed conditions nodulation was neither effective nor efficient. Soya bean was responsive to nitrogen fertilizers under both systems of production giving significant increments in grain yields. Non-nodulating plants with added nitrogen fertilizers produced more total dry matter than nodulating plants during the vegetative phase until flowering time. At 2 weeks after flowering total dry-matter production for both types was equal and from then on to maturity nodulating plants outyielded non-nodulating ones in total dry-matter production. In 1979 and 1980 yield of irrigated nodulating soya-bean grain was 0·53 and 1·54 t/ha higher than rainfed yields whereas the difference in grain yields of the non-nodulating soya beans was 0·21 t/ha and zero during the same two seasons, respectively. There was a contrasting inverse relation between the number of nodules and dry weights under the two systems of production. Fewer and heavier nodules were produced under irrigation whereas under rainfed conditions nodulation was profuse and nodules were light. On the evidence available 1–4 g/m length of the granular form of soil implant inoculant (Nitragin), i.e. 16·6·66.4 kg/ha, is to be recommended for irrigated soya-bean production in Sudan.


1963 ◽  
Vol 3 (10) ◽  
pp. 198 ◽  
Author(s):  
HJ Sims

The hay and grain yields of oat varieties currently widely grown in Australia have been compared with the old standard variety Algerian. The increased yield of the newer varieties is due almost entirely to increased grain : hay ratios (harvest index) and not to any increase in dry matter production. Only one variety in the study showed a significant improvement in dry matter production and, in this, the grain : hay ratio (harvest index) was not significantly altered.



1990 ◽  
Vol 41 (3) ◽  
pp. 449 ◽  
Author(s):  
GK McDonald

The growth and yield of two lines of uniculm barley, WID-103 and WID-105, were compared over a range of sowing rates (50-400 kg/ha) with the commercial varieties Galleon and Schooner. The experiments were conducted at Strathalbyn, S.A., in 1986, 1987 and 1988 and at the Waite Agricultural Research Institute in 1987. A third tillered variety, Clipper, was included in the comparison in 1988. Over the three years plant populations measured early in the season ranged from 39/m2 to 709/m2, and grain yields from 97 to 41 1 g/m2. Dry matter production at ear emergence increased with greater plant density, and both the tillered varieties and the uniculm lines showed similar responses to higher sowing rates. At maturity, dry matter production of the tillered barleys was greater than or equal to that of the uniculms and the harvest indices (HIs) of the two types were similar. Consequently, grain yields of the tillered types were greater than or equal to the yields of the uniculms. Over the four experiments the tillered varieties had a 6% higher yield. The number of ears/m2 was the yield component most affected by plant density in both the tillered and uniculm barleys. The uniculm lines had more spikelets/ear, but tended to set fewer grains/spikelet and produce smaller kernels. The experiments failed to demonstrate any advantage of the uniculm habit to the grain yield of barley. These results differ from previous experiments that showed that a uniculm line, WID-101, had a higher yield than the tillered variety Clipper. It is suggested that the uniculm habit per se was not the cause of this higher yield, but its higher HI resulted in it outyielding Clipper. Current varieties, however, have HIs similar to the uniculm lines and yield equally to or more than the uniculm barleys examined. To further improve the grain yield of uniculm barley, greater dry matter production is necessary as the HIs of these lines are already high.



Author(s):  
Yashvir S. Chauhan ◽  
Rex Williams

Mungbean [Vigna radiata (L.) Wilczek] in Australia has been transformed from a niche opportunistic crop into a major summer cropping option for dryland growers in the summer-dominant rainfall regions of Queensland and New South Wales. This transformation followed stepwise genetic improvements in both grain yields and disease resistance. For example, more recent cultivars such as ‘Crystal’, ‘Satin II’ and ‘Jade-AU‘  have provided up to a 20% yield advantage over initial introductions. Improved agronomic management to enable mechanised management and cultivation in narrow (<50 cm) rows has further promised to increase yields. Nevertheless, average yields achieved by growers for their mungbean crops remain less than 1 t/ha, and are much more variable than other broad acre crops.  Further increases in yield and crop resilience in mungbean are vital. In this review, opportunities to improve mungbean have been analysed at four key levels including phenology, leaf area development, dry matter accumulation and its partitioning into grain yield. Improving the prediction of phenology in mungbean may provide further scope for genetic improvements that better match crop duration to the characteristics of target environments. There is also scope to improve grain yields by increasing dry matter production through the development of more efficient leaf canopies. This may introduce additional production risks as dry matter production depends on the amount of available water, which varies considerably within and across growing regions in Australia. Improving crop yields by exploiting photo-thermal sensitivities to increase dry matter is likely a less risky strategy for these variable environments. Improved characterisation of growing environments using modelling approaches could also better define and identify the risks of major abiotic constraints. This would assist in optimising breeding and management strategies to increase grain yield and crop resilience in mungbean for the benefit of growers and industry.



1994 ◽  
Vol 122 (2) ◽  
pp. 255-264 ◽  
Author(s):  
H. Stützel ◽  
W. Aufhammer ◽  
A. Löber

SUMMARYField experiments were carried out in which three different sowing techniques: sowing by hand, with a conventional seed drill and with a precision drill, were used to plant an indeterminate and a determinate cultivar of Vicia faba at two sowing dates and at three population densities in 1989 and 1990 in Southern Germany.Delayed sowing reduced field emergence rates in both years. Hand sowing produced the poorest stands in some instances due to an insufficient sowing depth being achieved. Only at late sowing dates did precision drilling give greater field emergence rates than conventional drilling. During the early stages of growth, hand and precision sowing resulted in crops with the greatest light interception and dry matter production. However, these differences between sowing techniques decreased later on. Lodging was most severe in conventionally drilled crops, particularly at high population density. Thus, when lodging occurred, dry matter and grain yields decreased with increasing plant density in conventional sowings, although they tended to increase in hand-sown and precision-drilled crops. Overall, apart from this interaction, there was no significant effect of sowing technique on grain yield. Grain yields and dry matter production were generally higher in the indeterminate cultivar Herz Freya than in the determinate cultivar Ticol, but there were no differential effects of sowing technique.



2013 ◽  
Vol 49 (4) ◽  
pp. 543-555 ◽  
Author(s):  
FEIYU TANG ◽  
WENJUN XIAO

SUMMARYThe distribution of dry matter among the fractions of cotton boll (the bur, the fibre and the seed) may have significant impact on fibre biomass per boll, and consequently on lint yield. Little is known on how cotton boll allocates available photosynthetic assimilates to its components. A two-year field study was conducted to ascertain the difference in boll dry matter production and partitioning among three cotton genotypes differing in boll size and lint percentage. The dynamics of dry matter production in all fractions of cotton boll against boll age followed a logistic pattern. The final dry weights of all components were largely due to the duration of dry matter exponential accumulation, and less correlated with the maximal rate of exponential accumulation. Partitioning biomass to the bur differed significantly among these genotypes at 10 days post-anthesis (DPA). The genotypic difference in partitioning biomass to the fibre was originally observed at 24 DPA in 2009, while in 2010, this was observed at 17 DPA. The genotypic difference emerged rather late for the seed ratio compared with the fibre ratio and the bur ratio, which was first observed at 45 DPA in 2009 and at 31 DPA in 2010. These results indicate that management practices may need to be applied to cotton plants prior to 31 DPA to ensure optimal boll size and partitioning. Large boll genotype MM-2 consistently maintained higher seed ratio and lower fibre ratio than two other genotypes (2870 and AX) due to more developing ovules in its boll. These differences contributed to significant difference in lint percentage and less difference in fibre mass per boll between MM-2 and 2870 and AX.



2005 ◽  
Vol 45 (3) ◽  
pp. 217 ◽  
Author(s):  
P. M. Evans ◽  
J. G. Howieson ◽  
B. J. Nutt

A broad range of genotypes of Medicago sativa, and annual medics including M. polymorpha, M. tornata and M. littoralis were inoculated with strains of Sinorhizobium meliloti or S. medicae of differing effectiveness for symbiotic N2 fixation then sown at 4 field locations. Dry matter production over 2 seasons was strongly related to plant density, which in turn was related to symbiotic effectiveness. Eighteen months after sowing at Esperance, Western Australia, lucerne inoculated with strain WSM922 showed 79% higher plant density and 43% more production than control strain CC169. At Broomehill, no significant differences existed in dry matter production between lucerne cultivars inoculated with strains WSM922, WSM826 and U45. Across all lucerne genotypes, inoculation with WSM922 outyielded those inoculated with CC169 by 99%. At Jerramungup, the difference in yield between these 2 inoculant strains was 44%. Results were consistent with those previously obtained under controlled conditions and emphasised the necessity to remain aware of the symbiotic requirements of newly produced cultivars. An analysis of nodule occupancy at 1 site using PCR-RAPDs revealed the dominance of a particular rhizobial strain (WSM922) in uninoculated plots which had become colonised over 3 seasons. The necessity for separate inoculant species of Sinorhizobium in Australia to satisfy the symbiotic requirements of the acid and alkaline groups of medics was reaffirmed.





2005 ◽  
Vol 33 (1) ◽  
pp. 377-380
Author(s):  
Erzsébet Nádasy ◽  
Gábor Wágner


2013 ◽  
Vol 38 (10) ◽  
pp. 1884-1890 ◽  
Author(s):  
Ren-He ZHANG ◽  
Dong-Wei GUO ◽  
Xing-Hua ZHANG ◽  
Hai-Dong LU ◽  
Jian-Chao LIU ◽  
...  


2011 ◽  
Vol 37 (8) ◽  
pp. 1432-1440
Author(s):  
Cheng-Yan ZHENG ◽  
Shi-Ming CUI ◽  
Dong WANG ◽  
Zhen-Wen YU ◽  
Yong-Li ZHANG ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document