Isolation of genes/quantitative trait loci for drought stress tolerance in maize.

Author(s):  
Pardeep Kumar ◽  
Mukesh Choudhary ◽  
B. S. Jat ◽  
M. C. Dagla ◽  
Vishal Singh ◽  
...  

Abstract This chapter focuses on target traits for drought stress, progress in mapping for drought tolerance-associated genes/QTLs identification and expression studies and introgression strategies followed by the possibilities of integrating the concept of speed breeding in maize drought breeding programmes for better utilization of wild relatives.

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 105 ◽  
Author(s):  
Tahir Mahmood ◽  
Shiguftah Khalid ◽  
Muhammad Abdullah ◽  
Zubair Ahmed ◽  
Muhammad Kausar Nawaz Shah ◽  
...  

Drought stress restricts plant growth and development by altering metabolic activity and biological functions. However, plants have evolved several cellular and molecular mechanisms to overcome drought stress. Drought tolerance is a multiplex trait involving the activation of signaling mechanisms and differentially expressed molecular responses. Broadly, drought tolerance comprises two steps: stress sensing/signaling and activation of various parallel stress responses (including physiological, molecular, and biochemical mechanisms) in plants. At the cellular level, drought induces oxidative stress by overproduction of reactive oxygen species (ROS), ultimately causing the cell membrane to rupture and stimulating various stress signaling pathways (ROS, mitogen-activated-protein-kinase, Ca2+, and hormone-mediated signaling). Drought-induced transcription factors activation and abscisic acid concentration co-ordinate the stress signaling and responses in cotton. The key responses against drought stress, are root development, stomatal closure, photosynthesis, hormone production, and ROS scavenging. The genetic basis, quantitative trait loci and genes of cotton drought tolerance are presented as examples of genetic resources in plants. Sustainable genetic improvements could be achieved through functional genomic approaches and genome modification techniques such as the CRISPR/Cas9 system aid the characterization of genes, sorted out from stress-related candidate single nucleotide polymorphisms, quantitative trait loci, and genes. Exploration of the genetic basis for superior candidate genes linked to stress physiology can be facilitated by integrated functional genomic approaches. We propose a third-generation sequencing approach coupled with genome-wide studies and functional genomic tools, including a comparative sequenced data (transcriptomics, proteomics, and epigenomic) analysis, which offer a platform to identify and characterize novel genes. This will provide information for better understanding the complex stress cellular biology of plants.


2017 ◽  
Vol 155 (8) ◽  
pp. 1263-1271 ◽  
Author(s):  
W. L. TENG ◽  
W. J. FENG ◽  
J. Y. ZHANG ◽  
N. XIA ◽  
J. GUO ◽  
...  

SUMMARYLutein benefits human health significantly, including that of the eyes, skin and heart. Therefore, increasing lutein content in soybean seeds is an important objective for breeding programmes. However, no information about soybean lutein-related quantitative trait loci (QTL) has been reported, as of 2016. The aim of the present study was to identify QTLs underlying the lutein content in soybean seeds. A population including 129 recombinant inbred lines was developed from the cross between ‘Dongnong46’ (lutein 13·10 µg/g) and ‘L-100’ (lutein 23·96 µg/g), which significantly differed in seed lutein contents. This population was grown in ten environments including Harbin in 2012, 2013, 2014 and 2015; Hulan in 2013, 2014 and 2015; and Acheng in 2013, 2014 and 2015. A total of 213 simple sequence repeat markers were used to construct the genetic linkage map, which covered approximately 3623·39 cM, with an average distance of 17·01 cM between markers. In the present study, eight QTLs associated with lutein content were found initially, which could explain 1·01–19·66% of the observed phenotypic variation in ten different tested environments. The phenotypic contribution of qLU-1 (located near BARC-Satt588 on chromosome 9 (Chr 9; linkage group (LG) K)) was >10% across seven tested environments, while qLU-2 (located near Satt192 of Chr 12 (LG H)) and qLU-3 (located near Satt353 of Chr12 (LGH)) could explain 5–10% of the observed phenotypic variation in more than seven environments, respectively. qLU-5, qLU-6, qLU-7 and qLU-8 could be detected in more than four environments. These eight QTLs were novel, and have considerable potential value for marker-assistant selection of higher lutein content in soybean lines.


2002 ◽  
Vol 2002 ◽  
pp. 66-66
Author(s):  
N. Ball ◽  
M.J. Haskell ◽  
J.L. Williams ◽  
J.M. Deag

Farm animals show individual variation in their behavioural responses to handling and management systems on farms. These behavioural responses are presumed to reflect underlying temperament traits such as fear or aggression. Information about the location of genes that influence temperament traits could be used in selective breeding programmes to improve animal welfare, as selection for desirable behavioural responses would increase the ability of animals to cope with stressors encountered on farms. The aims of this study were to obtain reliable temperament measurements in cattle using behavioural tests, and to use this data to localise the genes (quantitative trait loci) that are involved in such traits.Behavioural data obtained in temperament tests must be shown to reflect underlying traits by demonstrating intra-animal repeatability, inter-animal variability and validity. The objectives of this experiment were i) to carry out four behaviour tests on a group of heifers, and examine the repeatability, variability and validity of the results obtained; ii) to correlate the behavioural data with genotyping data from a large number of heifers to look for associations between behavioural phenotypes and genetic markers. Associations localise quantitative trait loci (QTLs), or regions of the genome, that are involved in these traits.


2020 ◽  
Vol 80 (01) ◽  
Author(s):  
Bhupender Kumar ◽  
Krishan Kumar ◽  
Shankar Lal Jat ◽  
Shraddha Srivastava ◽  
Tanu Tiwari ◽  
...  

Drought stress is the major production constraint in rainfed maize. Screening for drought tolerance is severely affected by the lack of a simple and reliable phenotyping technique. The objective of this study was to standardize a simple hydroponic based drought screening technique in maize. In this context, one week old uniform seedlings of 55 inbreds and 5 hybrids were transferred to hydroponic solution in the glass house. The seedlings were allowed to acclimatize for next one week in hydroponic solution. The drought stress was imposed by removing seedlings from nutrient solution and exposed to air for 6 and 4 hours daily for a period of 5 and 4 consecutive days in hybrids and inbreds, respectively. Data were recorded on all shoot and root parameters, and based on stress symptoms, a drought tolerance score was given to each genotype. The percent deductions in shoot and root fresh weight from non-stress to stress ranged from 11.7 to 84.4 and 2.1 to 77.5, respectively. Six inbred lines, namely, DQL790-4, CML334, CM140, CML422, CM125 and HKI488 and three hybrids namely DMRH1306, DMRH1410 and PMH4 were found drought tolerant. The effectiveness of this screening technique was compared and confirmed using pots screening as well as by expression profiling of key antioxidant genes (Sod2, Sod4, Sod9 and Apx1) playing role in drought stress tolerance. This phenotyping technique is very short, low cost and simple which can be utilized in preliminary drought screening for large set of maize germplasm and mapping populations.


10.5109/26153 ◽  
2013 ◽  
Vol 58 (1) ◽  
pp. 1-6
Author(s):  
Nguyet M. T. Nguyen ◽  
Long H. Hoang ◽  
Naruto Furuya ◽  
Kenichi Tsuchiya ◽  
Thuy T. T. Nguyen

Sign in / Sign up

Export Citation Format

Share Document