LATERALIZED ULTRADIAN RHYTHMS OF THE RIGHT AND LEFT BRAIN: TEMPORAL VARIATIONS OF TACTILE DISCRIMINATION TESTED IN GERMAN SUBJECTS

1999 ◽  
Vol 31 (2) ◽  
pp. 221-231 ◽  
Author(s):  
ALFRED MEIER-KOLL

Endogenous ultradian rhythms with a periodicity of 2–3 hours operate separately in the right and left hemispheres of the human brain and modulate physiological functions, perception and cognition. Since sensory pathways from either hand terminate in the contralateral hemisphere, ultradian rhythms of the right and left brain can be monitored by variations in the tactile discrimination of the left and right hand, respectively. Thirteen right-handed German males were tested every 15 minutes for 8 hours. Time series of the tactile error rate determined for the right and left hands oscillate with significantly different ultradian periodicities. Whereas cycles in tactile discrimination of the right hand (left hemisphere) have a periodicity of about 2 hours, tactile discrimination of the left hand (right hemisphere) is modulated by longer periods of about 3 hours. This is interpreted in terms of the overall functional asymmetry of the human brain. Since the left brain is the specialized locus for verbal processing and the right brain for visual–spatial processing, lateralized ultradian rhythms operating in the hemispheres may provide a distinct frame for long-term timing of neuronal processes underlying semantic and spatial mapping of the environment. This is particularly important for interpreting biosocial behavioural rhythms seen in humans living under natural conditions.

1998 ◽  
Vol 86 (3) ◽  
pp. 967-975 ◽  
Author(s):  
Brian K. V. Maraj ◽  
Digby Elliott ◽  
James Lyons ◽  
Eric A. Roy ◽  
Tamara Winchester

Two experiments were conducted to examine manual asymmetries in a one-dimensional aiming task. In Exp. 1, 10 right-handed adults slid a computer mouse 13 cm on a graphics tablet with both the right and left hands to targets of 3 different diameters. Under these conditions, the movement time for the right hand was significantly faster as expected. In Exp. 2, subjects performed similar movements to move a cursor 13 cm on a computer monitor. Thus the study was identical except the stimulus-response mapping was indirect. In this situation, there were no significant differences for either movement time or movement error between hands despite these performance measures indicating that target aiming was more difficult in Exp. 2. Because increases in task difficulty generally result in a greater advantage for the right hand, as indicated by Todor & Smiley, 1985, the present studies suggest that superiority of the right hand in aiming tasks may be diminished when spatial translation is required. Perhaps the spatial translation requires greater involvement of the right hemisphere, a process associated with manual advantage for the left hand, previously suggested by Roy and MacKenzie.


Author(s):  
Sherma Zacharias ◽  
Andrew Kirk

ABSTRACT:Background:Constructional impairment following left vs. right hemisphere damage has been extensively studied using drawing tasks. A confounding factor in these studies is that right-handed patients with left hemisphere damage (LHD) are often forced by weakness to use their non-dominant (left) hand or hemiparetic dominant hand. Qualitative differences in the drawing characteristics of left and right hand drawings by normal subjects have not previously been characterized. The present study was undertaken to determine the qualitative differences between left and right hand drawings of normal subjects.Methods:Thirty right-handed, elderly subjects without a history of neurological disease were asked to draw, from memory, seven objects using the right and left hand. Half of the subjects were randomly assigned to draw with the left hand first, and half the right hand first. Right and left hand drawings were compared using a standardized scoring system utilized in several previous studies of drawing in focal and diffuse neurological disease. Each drawing was scored on eighteen criteria. Right and left hand drawing scores were then compared using the t-test for paired samples or the Wilcoxon matched-pairs testResults:Drawings made using the left hand were found to be significantly simpler, more tremulous and of poorer overall quality than drawings made by the same subjects using the right hand.Conclusions:The deficits found in left versus right hand drawings of normals are similar to those found in patients with LHD, suggesting that much of the drawing impairment seen following LHD is due to an elementary motor disturbance related to use of the non-dominant hand.


1982 ◽  
Vol 54 (2) ◽  
pp. 655-660 ◽  
Author(s):  
Daniela Brizzolara ◽  
Gianni L. De Nobili ◽  
Giovanni Ferretti

The role of the right hemisphere in a task of haptic discrimination of line orientation was studied in 16 children aged 7–6 and 16 adults aged 25 yr. The exploratory movements were limited to hand and wrist, since it has been shown that distal movements are mediated by the contralateral hemisphere. A comparison of the performance of the two hands shows a clear superiority of the left hand and inferred right hemisphere in both children and adults. An especial emphasis in the discussion is given to the role of the experimental procedure in enhancing the effect of the hemispheric functional asymmetries.


1984 ◽  
Vol 59 (3) ◽  
pp. 933-934 ◽  
Author(s):  
James K. Maxwell ◽  
Fred Wise ◽  
Mary Pepping ◽  
Brenda D. Townes ◽  
John Peel ◽  
...  

Records from 495 psychiatric patients from two neuropsychology laboratories indicated the Fingertip Number Writing test shows a significant and reliable left-hand advantage within and between laboratories. While the left-hand advantage may reflect a right-hemisphere superiority for tactile-spatial processing, it is not possible to distinguish between right hemispheric functional superiority and practice effects between hands because the standard fingertip writing task always starts with the right hand.


1996 ◽  
Vol 2 (5) ◽  
pp. 412-418 ◽  
Author(s):  
John C. Marshall ◽  
Peter W. Halligan

AbstractWe report a case of severe visuo-spatial neglect consequent upon right-hemisphere stroke. At the time of testing, the patient had no visual field cut and no significant hemiparesis. Conventional testing on cancellation tasks with the right hand revealed reliable left neglect, but performance was significantly improved when the left hand was used. Investigations of (manual) line bisection showed normal performance with the right hand but right neglect when the left hand was used. Right neglect was also observed on a purely perceptual version of the line bisection task. We argue that the attentional vectors of the cerebral hemispheres can be modulated by (perceptual) task-demands and by (motorie) response demands. (JINS, 1996, 2, 412–418.)


1989 ◽  
Vol 68 (3) ◽  
pp. 767-778 ◽  
Author(s):  
Teresa Wilcox ◽  
R. Harter Kraft

20 normal, right-handed, familial dextral men performed (a) unimanual finger tapping, (b) encoding of schematic faces at three levels of difficulty (3, 5, and 7 faces), (c) verbal production, (d) concurrent tapping and verbal production, and (e) concurrent tapping and face encoding. Subsequent recognition of faces was disrupted more by concurrent left-hand tapping than by concurrent right-hand tapping, supporting both the hypothesis that the right hemisphere mediates face encoding in adults and Kinsbourne and Hicks' (1978) “functional cerebral distance principle.” Left- and right-hand tapping rate and variability were not asymmetrically affected by either verbal production or face encoding. While there was an increase in generalized interference effects on face encoding, the degree of asymmetry of the interference remained constant. In addition, as the difficulty of the memory task increased, variability of tapping rate decreased. This was discussed in terms of attention and automatic motor programming.


2008 ◽  
Vol 20 (1-2) ◽  
pp. 55-60 ◽  
Author(s):  
Jonathan T. Kleinman ◽  
Amitabh Gupta

Spatial processing is lateralized: the right hemisphere is optimized for perceiving global aspects of space (“seeing the forest”), while the left hemisphere specializes in perceiving local aspects of space (“seeing the trees”). However, less is known about how the information is shared across the hemispheres and which areas within the corpus callosum are required for transferring and integrating visuospatial information. Here, we report a 60 year old woman with a mass lesion in the splenium of the corpus callosum who demonstrated visuospatial processing deficits that were out-of-proportion to the rest of her neurological examination. Remarkably, in the Rey-Osterrieth Complex figure task, she copied with her left hand the outlines of the figure (global aspects), whereas with her right hand she drew the details of that figure (local aspects). While hemispheric lesions have demonstrated single dissociations of spatial processing, these results indicate that a lesion in the corpus callosum can produce a double dissociation for high-level spatial tasks, as local and global spatial perception are further dissociated with handedness. Interestingly, as little as the posterior third of the corpus callosum is required for proper visuospatial information transfer and integration, which provides important insight into the interhemispheric functional anatomy that underlies visuospatial perception.


2003 ◽  
Vol 89 (1) ◽  
pp. 460-471 ◽  
Author(s):  
Lisa Koski ◽  
Marco Iacoboni ◽  
Marie-Charlotte Dubeau ◽  
Roger P. Woods ◽  
John C. Mazziotta

Imitation is a basic form of motor learning during development. We have a preference to imitate the actions of others as if looking in a mirror (specular imitation: i.e., when the actor moves the left hand, the imitator moves the right hand) rather than with the anatomically congruent hand (anatomic imitation: i.e., actor and imitator both moving the right hand). We hypothesized that this preference reflects changes in activity in previously described frontoparietal cortical areas involved in directly matching observed and executed actions (mirror neuron areas). We used functional magnetic resonance imaging to study brain activity in normal volunteers imitating left and right hand movements with their right hand. Bilateral inferior frontal and right posterior parietal cortex were more active during specular imitation compared with anatomic imitation and control motor tasks. Furthermore this same pattern of activity was also observed in the rostral part of the supplementary motor area (SMA-proper) of the right hemisphere. These findings suggest that the degree of involvement of frontoparietal mirror areas in imitation depends on the nature of the imitative behavior, ruling out a linguistic mediation of these areas in imitation. Moreover, activity in the SMA appears to be tightly coupled to frontoparietal mirror areas when subjects copy the actions of others.


1946 ◽  
Vol 11 (1) ◽  
pp. 2-2

In the article “Infant Speech Sounds and Intelligence” by Orvis C. Irwin and Han Piao Chen, in the December 1945 issue of the Journal, the paragraph which begins at the bottom of the left hand column on page 295 should have been placed immediately below the first paragraph at the top of the right hand column on page 296. To the authors we express our sincere apologies.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Velarie Ansu ◽  
Stephanie Dickinson ◽  
Alyce Fly

Abstract Objectives To determine which digit and hand have the highest and lowest skin carotenoid scores, to compare inter-and-intra-hand variability of digits, and to determine if results are consistent with another subject. Methods Two subjects’ first(F1), second(F2), third(F3) and fifth(F5) digits on both hands were measured for skin carotenoids with a Veggie Meter, for 3 times on each of 18 days over a 37-day period. Data were subjected to ANOVA in a factorial treatment design to determine main effects for hand (2 levels), digits (4), and days (18) along with interactions. Differences between digits were determined by Tukey's post hoc test. Results There were significant hand x digit, hand x day, digit x day, and hand x digit x day interactions and significant simple main effects for hand, digit, and day (all P < 0.001). Mean square errors were 143.67 and 195.62 for subject A and B, respectively, which were smaller than mean squares for all main effects and interactions. The mean scores ± SD for F1, F2, F3, and F5 digits for the right vs left hands for subject A were F1:357.13 ± 45.97 vs 363.74 ± 46.94, F2:403.17 ± 44.77 vs. 353.20 ± 44.13, F3:406.76 ± 43.10 vs. 357.11 ± 45.13, and F5:374.95 ± 53.00 vs. 377.90 ± 47.38. For subject B, the mean scores ± SD for digits for the right vs left hands were F1:294.72 ± 61.63 vs 280.71 ± 52.48, F2:285.85 ± 66.92 vs 252.67 ± 67.56, F3:268.56 ± 57.03 vs 283.22 ± 45.87, and F5:288.18 ± 34.46 vs 307.54 ± 40.04. The digits on the right hand of both subjects had higher carotenoid scores than those on the left hands, even though subjects had different dominant hands. Subject A had higher skin carotenoid scores on the F3 and F2 digits for the right hand and F5 on the left hand. Subject B had higher skin carotenoid scores on F5 (right) and F1 (left) digits. Conclusions The variability due to hand, digit, and day were all greater than that of the 3 replicates within the digit-day for both volunteers. This indicates that data were not completely random across the readings when remeasuring the same finger. Different fingers displayed higher carotenoid scores for each volunteer. There is a need to conduct a larger study with more subjects and a range of skin tones to determine whether the reliability of measurements among digits of both hands is similar across the population. Funding Sources Indiana University.


Sign in / Sign up

Export Citation Format

Share Document