Effects of intramammary arterial infusion of non-essential amino acids and glucose in the lactating goat

1974 ◽  
Vol 41 (1) ◽  
pp. 111-121 ◽  
Author(s):  
T. B. Mepham ◽  
J. L. Linzell

SummaryThree experiments were carried out on 2 lactating goats, in which mammary arterial plasma amino-acid concentrations were elevated by the infusion of a solution of non-essential amino acids into a carotid artery supplying a transplanted mammary gland. In a fourth experiment a solution of glucose was similarly infused. In some cases the increased arterial concentrations of amino acids resulted in their increased mammary uptake, and in a depression of glucose uptake. However, infusions of neither amino acids nor glucose resulted in increased milk protein yield. Infusion of [U-14C]glutamic acid in one experiment demonstrated gluconeogenesis from glutamate carbon within the mammary gland. The results are discussed in relation to data obtained in another laboratory, from which it has been claimed that non-essential amino acid supply may limit milk protein synthesis. The present results provide no confirmation for the claim.

1974 ◽  
Vol 41 (1) ◽  
pp. 101-109 ◽  
Author(s):  
J. L. Linzell ◽  
T. B. Mepham

SummaryExperiments were performed on 3 lactating goats, in which mammary arterial plasma amino-acid concentrations were elevated by the infusion of a solution of essential amino-acids into the carotid artery supplying a transplanted mammary gland. In 2 experiments there were marked elevations in the arterial concentrations of most essential amino acids, but in one case only did this result in significantly increased uptake of amino acids by the gland, the arterio-venous difference being significantly correlated with arterial concentration for all except one amino acid. In the experiment in which increased amino-acid uptake was observed, infusion also resulted in a significantly increased milk yield and increased milk protein yield. The results are discussed in relation to data from other laboratories and lead to the suggestion that milk protein synthesis may be limited by the availability of either methionine or tryptophan.


1974 ◽  
Vol 41 (1) ◽  
pp. 95-100 ◽  
Author(s):  
T. B. Mepham ◽  
J. L. Linzell

SummaryArterio-venous (AV) blood plasma concentration differences of amino acids across the mammary glands of 2 lactating goats were measured at intervals throughout a day. One gland of each animal had been transplanted to the neck for experimental purposes. The variation throughout the day in arterial concentration of all amino acids was similar. The variation in AV differences was slight for most essential amino acids, greater for glutamic acid and proline and very marked for aspartic acid, alanine, glycine and citrulline. There was no statistical difference between the AV difference of any amino acid measured simultaneously across the 2 glands of either goat. The arterial concentrations of certain pairs of amino acids were significantly correlated. The implications of the results for estimation of rates of amino-acid synthesis in the mammary gland using the intra-arterial infusion technique are discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Meilin He ◽  
Xintian Nie ◽  
Huanhuan Wang ◽  
Shuping Yan ◽  
Yuanshu Zhang

Chinese dairy industries have developed rapidly, providing consumers with high-quality sources of nutrition. However, many problems have also appeared during the development process, especially the low quality of milk. To improve milk quality, a large amount of concentrated feed is usually added to the diet within a certain period of time, which increases the milk production to a certain extent. However, long-term feeding with high-concentration feed can lead to subacute rumen acidosis. Therefore, the present study aimed to determine the effect of adding a buffer on subacute rumen acidosis, and the improvement of milk production and milk quality. We also aimed to study the mechanism of promoting mammary gland lactation. A total of 12 healthy mid-lactating goats were randomly divided into two groups, they were high-grain diet group (Control) and buffering agent group. To understand the effects of high-grain diets with buffers on amino acids in jugular blood and the effects of amino acids on milk protein synthesis, Milk-Testing™ Milkoscan 4000, commercial kits, and high-performance liquid chromatography (HPLC) measurements were integrated with the milk protein rate, the amino acid concentration in jugular venous blood samples, quantitative real-time PCR, comparative proteomics, and western blotting to study differentially expressed proteins and amino acids in mammary gland tissues of goats fed high-grain diets. Feeding lactating goats with buffering agent increased the percentage of milk protein in milk, significantly increased the amino acid content of jugular blood (p < 0.05), and increase the amino acid transporter levels in the mammary gland. Compared with the high-grain group, 2-dimensional electrophoresis technology, matrix-assisted laser desorption/ionization-time of flight/time of flight proteomics analyzer, and western blot analysis further verified that the expression levels of beta casein (CSN2) and lactoferrin (LF) proteins in the mammary glands of lactating goats were higher when fed a high-grain diets and buffers. The mechanism of increased milk protein synthesis was demonstrated to be related to the activation of mammalian target of rapamycin (mTOR) pathway signals.


Author(s):  
F.R.C. Backwell ◽  
B.J. Bequette ◽  
A.G. Calder ◽  
J.A. Metcalf ◽  
D. Wray-Cahen ◽  
...  

Most considerations of protein digestion assume that amino acids are made available to the body tissues as the free form but recent reports suggest that a substantial portion may be absorbed from the stomach region of ruminants as small peptides (1). However, the quantitative relevance of this absorption to amino acid supply to tissues remains unclear. We have previously indicated that in early lactation at least part of the amino acid supply to the lactating mammary gland may be met from blood derived peptides or small proteins (2) but at present there is no direct evidence to suggest that peptides can contribute amino acids to the gland for milk protein synthesis. However, it has been demonstrated in dairy animals that the uptake of certain amino acids across the mammary gland is insufficient to account for their output in milk protein (J.A. Metcalf, unpublished observation) and the possible utilisation of amino acids in ‘non-free’ form must be considered. The present study involves the use of a dual-labelled tracer approach to evaluate the ability of the mammary gland to utilise amino acids in peptide-bound form for milk protein synthesis. The technique involves infusion into the external pudic artery (EPA) supplying one half of die gland of a dipeptide XY where Y is a [13C]-labelled amino acid, coupled with a simultaneous (jugular) infusion of the amino acid Y but with a deuterium label. The jugular infusion allows a correction for recycled amino acid generated by whole animal (i.e. non-mammary) hydrolysis of the infused peptide. In theory if the half of the gland receiving direct infusion of the dipeptide utilises peptide-bound Y for milk protein synthesis then the ratio of [13C] : deuterium should be greater in casein secreted from that half of the gland compared with the other (control) side of the gland.


1979 ◽  
Vol 46 (1) ◽  
pp. 69-73 ◽  
Author(s):  
T. Ben Mepham ◽  
Andrew R. Peters ◽  
Stephen Alexandrov

SUMMARYWhen individual essential amino acids were omitted for periods of 40–100 min from the infusate substrate solution in isolated perfused guinea-pig mammary gland experiments, uptake of methionine, tyrosine, phenylalanine, histidine and tryptophan (group 1) was significantly depressed by a mean of 49·8%, whereas the remaining essential amino acids (group 2) showed no significant decrease in uptake. During depletion periods oxidation of [14C\amino acids was increased. The possible significance of the differences in absorption between the 2 groups of amino acids is discussed.


2003 ◽  
Vol 90 (2) ◽  
pp. 271-281 ◽  
Author(s):  
D. Pacheco ◽  
M.H. Tavendale ◽  
G. W. Reynolds ◽  
T. N. Barry ◽  
J. Lee ◽  
...  

The utilisation of essential amino acids (EAA) by the mammary gland of lactating dairy cows fed fresh forages was studied to provide basic information useful in designing strategies to increase the production of milk protein from pasture-fed dairy cows. The relationship between the flux of EAA in the whole body and their uptake by the mammary gland was determined in four cows in early lactation (length of time in milk 44 (SD 14·5) d) producing 21 (SD 4·0) kg milk/d. The cows were maintained in metabolism stalls and fed fresh perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) pasturead libitumor restricted to 75 %ad libitumintake. The whole-body fluxes of amino acids (AA) were measured using an arterio-venous infusion of universally13C-labelled AA. Whole-body fluxes of fourteen AA were estimated. Isotope dilution indicated that mammary utilisation accounted for one-third of the whole-body flux of EAA, with individual AA ranging between 17 and 35 %. Isoleucine, leucine, valine and lysine were the EAA with the greatest partitioning towards the mammary gland (up to 36 % of the whole-body flux), which could reflect a potentially limiting effect on milk protein synthesis. In the case of AA with low partitioning to the mammary gland (for example, histidine), it is suggested that non-mammary tissues may have priority over the mammary gland and therefore the supply of this AA may also limit milk protein synthesis.


1985 ◽  
Vol 54 (1) ◽  
pp. 219-244 ◽  
Author(s):  
Cynthia A. Sedgman ◽  
J. H. B. Roy ◽  
Joanne Thomas ◽  
I. J. F. Stobo ◽  
P. Ganderton

1.Two experiments of Latin square design were made, each with four Friesian bull calves fitted with re-entrant duodenal and ileal cannulas at 4–10 d of age. The calves were used to studythe effect of giving milk-substitutes containing 0, 300, 500 and 700 g bacterial protein (Pruteen)/kg total protein on apparent digestibility of nitrogen fractions and amino acids and true digestibility of 3H-labelled milk protein and 35S-labelled bacterial protein in the small intestine. A third experiment of Latin square design with four intact Friesian calves was used to measure apparent digestibility of nutrients throughout the alimentary tract and retention of N, calcium and phosphorus.2.At the duodenum, volume of outflow, its pH, and outflow of total-N (TN), protein-N (PN) and non-protein-N (NPN) decreased with time after feeding. At the ileum, volume of outflow and TN outflow were unaffected by time after feeding but PN outflow decreased; NPN outflow at the ileum increased to a maximum 6 h after feeding and then declined.3.Increased inclusion of Pruteen did not affect the volume of outflow at the duodenum or ileum, but duodenal PN outflow increased. At the ileum, pH values were lower and TN, PN and NPN outflows were higher with increasing concentration of Pruteen in the diet. Apparent digestibility in the small intestine tended to decrease with greater amounts of Pruteen, but was only significant for NPN. Apparent digestibility from mouth to ileum significantly decreased for TN and PN as Pruteen inclusion increased.4.Amino acid concentration in duodenal outflow, with the exception of that of arginine, reflected intake. The total amount of each amino acid in ileal outflow increased and the apparent digestibility of most amino acids decreased with greater amounts of Pruteen in the diet. Apparent digestibility of nucleic acid-N from Pruteen was very high.5.True digestibility in the small intestine and between mouth and ileum of 3H-labelled milk protein was high and did not differ between dietary treatments. True digestibility of 36S-labelled Pruteen was low for the milk-protein diet and tended to increase linearly as more dietary Pruteen was included.6.Dry matter concentration in faeces and a high apparent digestibility throughout the whole alimentary tract of carbohydrates did not differ between treatments. Apparent digestibility of dry matter, organic matter, crude protein and fat, apparent absorption of Ca, P and ash throughout the tract, retention of N, Ca and P and biological value of the protein decreased with inclusion rates greater than 300 g Pruteen/kg total dietary protein. The amount of N apparently absorbed in the large intestine was estimated as 0.9 g/d.7.Comparison of intake of apparently absorbed essential amino acids with requirement suggests that histidine is likely to be the limiting amino acid, assuming that arginine is synthesized in the body.8.Efficiencies of utilization of protein for tissue synthesis and to cover obligatory loss are estimated as 0.80, 0.75, 0.66 and 0.47 for diets containing 0, 300, 500 and 700 g Pruteen/kg total protein in the diet. Efficiencies of utilization of individual essential amino acids were also estimated.


1973 ◽  
Vol 53 (4) ◽  
pp. 717-724 ◽  
Author(s):  
H. A. SALEM ◽  
T. J. DEVLIN ◽  
J. R. INGALLS ◽  
G. D. PHILLIPS

The effects of a semipurified diet containing 0 (0% urea-N diet), 50 (39% urea-N diet), or 100% (76% urea-N diet) of added dietary nitrogen (N) as urea on the amino acid concentrations in ruminant tissues was investigated. Three rumen-fistulated bull calves averaging 240 kg were used in a latin square design. The calves were fed using a continuous feeder to provide 7 kg of feed daily. Each experimental period of the latin square was 40 days divided into four 10-day intervals. Liver samples were obtained on the 9th day of each 10-day interval and rumen epithelium and rumen microorganisms were obtained on the 10th day of each 10-day interval. Blood samples were collected on the 6th, 8th, and 10th day of each 10-day interval for the determination of plasma amino acid patterns as well as the amino acid concentrations in the tissues. Plasma amino acid patterns indicated that when the 76% urea-N diet was fed the levels of aspartic acid, citrulline, glutamic acid, glycine, and proline were increased. Most of the essential amino acids were decreased on the 76% urea-N diet as compared with the 0% urea-N diet. All amino acids of rumen microorganisms were increased on the 39% urea-N diet with the exception of arginine, lysine, and threonine, which decreased slightly or did not show any change. Most amino acids were lower on the 76% urea-N diet as compared with the 39% or 0% urea-N diets. All essential amino acids measured in the liver were reduced on the 76% urea-N diet. Cystine, glutamic acid, glycine, isoleucine, leucine, lysine, tryptophan, and valine were also reduced on the 39% urea-N diet. In rumen epithelium, there was a reduction of the essential amino acids and an increase of the nonessential amino acids on the 76% urea-N diet.


1998 ◽  
Vol 1998 ◽  
pp. 3-3
Author(s):  
B.J. Bequette ◽  
F.R.C. Backwell ◽  
C.E. Kyle ◽  
A.G. Calder ◽  
L.A. Crompton ◽  
...  

The mammary gland of lactating ruminants (Guinard & Rulquin 1994) does not appear to extract sufficient quantities of free amino acids (AA) to account for their output as milk protein. Based upon application of a precursor (blood or plasma free AA):product (casein) labelling technique (Backwell et al. 1996) in goats, results suggest that blood peptides or proteins taken up by the gland probably account for this deficit. However, the deficiency appears to be alleviated when supplemental protein or AA are infused (Guinard & Rulquin 1994), suggesting that uptake of peptide bound AA is reduced while that of the free AA is increased. The objective of the current study was to corroborate these findings, thus the precursonproduct labelling technique was applied in lactating goats to determine whether arterial free phenylalanine supply affects the contribution of peptide bound phenylalanine and tyrosine to casein synthesis and compare the results to the net uptake (NU) method.


Sign in / Sign up

Export Citation Format

Share Document