Hormone-dependent milk protein gene expression in bovine mammary explants from biopsies at different stages of pregnancy

2004 ◽  
Vol 71 (2) ◽  
pp. 135-140 ◽  
Author(s):  
Paul A Sheehy ◽  
James J Della-Vedova ◽  
Kevin R Nicholas ◽  
Peter C Wynn

A method for the collection of mammary biopsies developed previously was refined and used to study the endocrine regulation of bovine milk protein gene expression. Our surgical biopsy method used real-time ultrasound imaging and epidural analgesia to enable recovery of a sufficient quantity of mammary tissue from late-pregnant dairy cows for explant culture in vitro. The time of biopsy was critical for prolactin-dependent induction of milk protein gene expression in mammary explants, as only mammary tissue from cows nearing 30 d prepartum was hormone-responsive. This suggests that during the later stages of pregnancy a change in the responsiveness of milk protein gene expression to endocrine stimuli occurred in preparation for lactation. This may relate to the diminution of a putative population of undifferentiated cells that were still responsive to prolactin. Alternatively, the metabolic activity of the tissue had increased to the level whereby the response of the tissue was no longer assessable using this model in vitro.

1994 ◽  
Vol 13 (2) ◽  
pp. 117-125 ◽  
Author(s):  
P H Bird ◽  
K A K Hendry ◽  
D C Shaw ◽  
C J Wilde ◽  
K R Nicholas

ABSTRACT Changes in milk protein gene expression and specific prolactin binding were quantified in mammary tissue from the tammar wallaby (Macropus eugenii) at different stages of lactation. The transition from early (phase 2) lactation to late (phase 3) lactation was characterized by the induction of the gene for late lactation protein, a novel whey protein. During the same period, the levels of β-lactoglobulin and β-casein gene expression increased, whereas there was no change in the levels of expression of α-lactalbumin and α-casein genes. Prolactin binding in the mammary gland doubled during the latter half of phase 2 of lactation but declined significantly during the transition to phase 3 of lactation. These changes in prolactin binding resulted from changes in the number of receptors and not from a change in the affinity of the receptor for prolactin. Treatment of membranes with concanavalin A increased the number of prolactin-binding sites by 40% in membranes from phase 2 mammary tissue but decreased binding by 40% in membranes from phase 3 tissue, indicating that significant changes had occurred in the membranes of cells during this period. The tammar wallaby can secrete phase 2 and phase 3 milk from adjacent mammary glands (asynchronous concurrent lactation) and the developmental changes in milk protein gene expression and prolactin binding observed during lactation were reflected in these individual glands. Taken collectively, these findings suggest that mammary development and milk secretion in the tammar wallaby are regulated by both endocrine and local (intramammary) mechanisms.


1988 ◽  
Vol 2 (10) ◽  
pp. 2619-2624 ◽  
Author(s):  
Chung S. Park ◽  
Yun J. Choi ◽  
Wanda L. Keller ◽  
Robert L. Harrold

2012 ◽  
Vol 57 (No. 10) ◽  
pp. 469-480 ◽  
Author(s):  
T. Sigl ◽  
H.H.D. Meyer ◽  
S. Wiedemann

&nbsp;The objective of the present study was to refine a previously developed method to isolate primary bovine mammary epithelial cells (pBMEC) from fresh milk. Using this method, it was tested whether the number of pBMEC and the relation of recovered pBMEC to total somatic cell count vary within the individual lactation stages. Furthermore, the expression levels of the milk protein genes during the first twenty weeks of lactation were determined by quantitative PCR method. A total number of 152 morning milk samples were obtained from twenty-four Holstein-Friesian cows during the first 20 weeks of lactation (day 8, 15, 26, 43, 57, 113, and 141 postpartum). Numbers of extracted pBMEC were consistent at all time-points (1.1 &plusmn; 0.06 to 1.4 &plusmn; 0.03 &times;10<sup>3</sup>/ml) and an average value of RNA integrity number (RIN) was 6.3 &plusmn; 0.3. Percentage of pBMEC in relation to total milk cells (2.0 &plusmn; 0.2 to 6.7 &plusmn; 1.0%) correlated with milk yield. Expression patterns of the casein genes alpha (&alpha;)<sub>S1</sub>, (&alpha;)<sub>S2</sub>, beta (&beta;), and kappa (&kappa;) (CSN1S1, CSN1S2, CSN2, CSN3, respectively) and the whey protein genes &alpha;-lactalbumin (LALBA) and progestagen-associated endometrial protein (PAEP; known as &beta;-lactoglobulin) were shown to be comparable, i.e. transcripts of all six milk protein genes were found to peak during the first two weeks of lactation and to decline continuously towards mid lactation. However, mRNA levels were different among genes with CSN3 showing the highest and LALBA the lowest abundance. We hypothesized that milk protein gene expression has a pivotal effect on milk protein composition with no influence on milk protein concentration. This paper is the first to describe milk protein gene expression during lactation in pBMEC collected in milk. Future studies will be needed to understand molecular mechanisms in pBMEC including regulation of expression and translation throughout lactation. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document