Analysis of singular inertial modes in a spherical shell: the slender toroidal shell model

2002 ◽  
Vol 463 ◽  
pp. 345-360 ◽  
Author(s):  
M. RIEUTORD ◽  
L. VALDETTARO ◽  
B. GEORGEOT

We derive the asymptotic spectrum (as the Ekman number E → 0) of axisymmetric inertial modes when the problem is restricted to two dimensions. We show that the damping rate of such modes scales with the square root of the Ekman number and that the width of the shear layers of the eigenfunctions scales with E1/4. The eigenfunctions obey a Schrödinger equation with a quadratic potential; we provide the analytical expression for eigenvalues (frequency and damping rate). These results validate the picture that attractors act like a potential well, trapping inertial waves which resist confinement owing to viscosity. Using three-dimensional numerical solutions, we show that the results can be applied to equatorially trapped modes in a thin spherical shell; in fact, these two-dimensional solutions give the first step (the zeroth order) of a perturbative approach to three-dimensional solutions in a spherical shell. Our method is applicable in a straightforward way to any other container where bi-dimensionality dominates.

1984 ◽  
Vol 146 ◽  
pp. 1-20 ◽  
Author(s):  
P. J. Bryant

Oblique wave groups consist of waves whose straight parallel lines of constant phase are oblique to the straight parallel lines of constant group phase. Numerical solutions for periodic oblique wave groups with envelopes of permanent shape are calculated from the equations for irrotational three-dimensional deep-water motion with nonlinear upper free-surface conditions. Two distinct families of periodic wave groups are found, one in which the waves in each group are in phase with those in all other groups, and the other in which there is a phase difference of π between the waves in consecutive groups. It is shown that some analytical solutions for oblique wave groups calculated from the nonlinear Schrödinger equation are in error because they ignore the resonant forcing of certain harmonics in two dimensions. Particular attention is given to oblique wave groups whose group-to-wave angle is in the neighbourhood of the critical angle tan−1√½, corresponding to waves on the boundary wedge of the Kelvin ship-wave pattern.


2018 ◽  
Vol 844 ◽  
pp. 597-634 ◽  
Author(s):  
M. Rieutord ◽  
L. Valdettaro

We investigate the asymptotic properties of axisymmetric inertial modes propagating in a spherical shell when viscosity tends to zero. We identify three kinds of eigenmodes whose eigenvalues follow very different laws as the Ekman number $E$ becomes very small. First are modes associated with attractors of characteristics that are made of thin shear layers closely following the periodic orbit traced by the characteristic attractor. Second are modes made of shear layers that connect the critical latitude singularities of the two hemispheres of the inner boundary of the spherical shell. Third are quasi-regular modes associated with the frequency of neutral periodic orbits of characteristics. We thoroughly analyse a subset of attractor modes for which numerical solutions point to an asymptotic law governing the eigenvalues. We show that three length scales proportional to $E^{1/6}$, $E^{1/4}$ and $E^{1/3}$ control the shape of the shear layers that are associated with these modes. These scales point out the key role of the small parameter $E^{1/12}$ in these oscillatory flows. With a simplified model of the viscous Poincaré equation, we can give an approximate analytical formula that reproduces the velocity field in such shear layers. Finally, we also present an analysis of the quasi-regular modes whose frequencies are close to $\sin (\unicode[STIX]{x03C0}/4)$ and explain why a fluid inside a spherical shell cannot respond to any periodic forcing at this frequency when viscosity vanishes.


1984 ◽  
Vol 11 (3) ◽  
pp. 585-609 ◽  
Author(s):  
N. Elhadi ◽  
A. Harrington ◽  
I. Hill ◽  
Y. L. Lau ◽  
B. G. Krishnappan

This report is intended as a reference for practising engineers. A description of the various physical processes involved in the spreading of a substance in river flows as well as the mathematical formulation of these processes is given. These processes are combined in the mass balance equation to describe the mixing of substances released into rivers. The difficulties of solving three-dimensional mixing problems for real river situations are discussed. The simplification of the equation into two dimensions using depth averaging and the introduction of the stream-tube concept are described. Analytical and numerical solutions are recommended. The conventional Fickian description of one-dimensional mixing is given, followed by the description of a model that takes into account the non-Fickian behaviour often observed. Sample problems of one-dimensional and two-dimensional mixing are solved, using the recommended procedures. The effects of ice cover on mixing are discussed and cases of nonconservative substances are described. Key words: mixing, rivers, dispersion, concentration distribution, longitudinal mixing, transverse mixing, stream-tube model.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


2007 ◽  
Vol 40 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Klaus Schmidt-Rohr

A simple numerical approach for calculating theq-dependence of the scattering intensity in small-angle X-ray or neutron scattering (SAXS/SANS) is discussed. For a user-defined scattering density on a lattice, the scattering intensityI(q) (qis the modulus of the scattering vector) is calculated by three-dimensional (or two-dimensional) numerical Fourier transformation and spherical summation inqspace, with a simple smoothing algorithm. An exact and simple correction for continuous rather than discrete (lattice-point) scattering density is described. Applications to relatively densely packed particles in solids (e.g.nanocomposites) are shown, where correlation effects make single-particle (pure form-factor) calculations invalid. The algorithm can be applied to particles of any shape that can be defined on the chosen cubic lattice and with any size distribution, while those features pose difficulties to a traditional treatment in terms of form and structure factors. For particles of identical but potentially complex shapes, numerical calculation of the form factor is described. Long parallel rods and platelets of various cross-section shapes are particularly convenient to treat, since the calculation is reduced to two dimensions. The method is used to demonstrate that the scattering intensity from `randomly' parallel-packed long cylinders is not described by simple 1/qand 1/q4power laws, but at cylinder volume fractions of more than ∼25% includes a correlation peak. The simulations highlight that the traditional evaluation of the peak position overestimates the cylinder thickness by a factor of ∼1.5. It is also shown that a mix of various relatively densely packed long boards can produceI(q) ≃ 1/q, usually observed for rod-shaped particles, without a correlation peak.


Author(s):  
Sheng Yu-ming ◽  
Li Chao ◽  
Xia Ming-yao ◽  
Zou Jin-feng

Abstract In this study, elastoplastic model for the surrounding rock of axisymmetric circular tunnel is investigated under three-dimensional (3D) principal stress states. Novel numerical solutions for strain-softening surrounding rock were first proposed based on the modified 3D Hoek–Brown criterion and the associated flow rule. Under a 3D axisymmetric coordinate system, the distributions for stresses and displacement can be effectively determined on the basis of the redeveloped stress increment approach. The modified 3D Hoek–Brown strength criterion is also embedded into finite element software to characterize the yielding state of surrounding rock based on the modified yield surface and stress renewal algorithm. The Euler implicit constitutive integral algorithm and the consistent tangent stiffness matrix are reconstructed in terms of the 3D Hoek–Brown strength criterion. Therefore, the numerical solutions and finite element method (FEM) models for the deep buried tunnel under 3D principal stress condition are presented, so that the stability analysis of surrounding rock can be conducted in a direct and convenient way. The reliability of the proposed solutions was verified by comparison of the principal stresses obtained by the developed numerical approach and FEM model. From a practical point of view, the proposed approach can also be applied for the determination of ground response curve of the tunnel, which shows a satisfying accuracy compared with the measuring data.


Sign in / Sign up

Export Citation Format

Share Document