ekman number
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 2)

H-INDEX

21
(FIVE YEARS 1)

2020 ◽  
Vol 494 (3) ◽  
pp. 3141-3155 ◽  
Author(s):  
Umin Lee

ABSTRACT We calculate small amplitude gravitational and thermal tides of uniformly rotating hot Jupiters composed of a nearly isentropic convective core and a geometrically thin radiative envelope. We treat the fluid in the convective core as a viscous fluid and solve linearized Navier–Stokes equations to obtain tidal responses of the core, assuming that the Ekman number, Ek, is a constant parameter. In the radiative envelope, we take account of the effects of radiative dissipations on the responses. The properties of tidal responses depend on thermal time-scales τ* in the envelope and Ekman number, Ek, in the core and on whether the forcing frequency ω is in the inertial range or not, where the inertial range is defined by |ω| ≤ 2Ω for the rotation frequency Ω. If Ek ≳ 10−7, the viscous dissipation in the core is dominating the thermal contributions in the envelope for τ* ≳ 1 d. If Ek ≲ 10−7, however, the viscous dissipation is comparable to or smaller than the thermal contributions and the envelope plays an important role to determine the tidal torques. If the forcing is in the inertial range, frequency resonance of the tidal forcing with core inertial modes significantly affects the tidal torques, producing numerous resonance peaks of the torque. Depending on the sign of the torque in the peaks, we suggest that there exist cases in which the resonance with core inertial modes hampers the process of synchronization between the spin and orbital motion of the planets.


2019 ◽  
Vol 82 ◽  
pp. 357-363
Author(s):  
L. Petitdemange ◽  
R. Raynaud

Numerical modelling of convection driven dynamos in the Boussinesq approximation revealed fundamental characteristics of the dynamo-generated magnetic fields, but the relevance of these results remains to be assessed for highly stratified systems, like gas planets and stars. The common approach is then to rely on the anelastic approximation to model the background density stratification. A conclusion from different anelastic studies is that dipolar solutions seem more difficult to obtain in presence of a substantial density contrast. We review some important results obtained by Raynaud et al. (2015), who investigated the influence of the density stratification on the stability of dipolar dynamos. This study indicates that the loss of the dipolar branch does not ensue from a specific modification of the dynamo mechanisms related to the background stratification, but could instead result from a bias as our observations naturally favour a certain domain in the parameter space characterized by moderate values of the Ekman number. In strongly stratified systems, the force balance may vary with depth, and a local increase of inertia close to the outer surface can explain the loss of the dipolar branch, while volume-averaged measures may underestimate the role of inertia on the field topology.


2018 ◽  
Vol 844 ◽  
pp. 597-634 ◽  
Author(s):  
M. Rieutord ◽  
L. Valdettaro

We investigate the asymptotic properties of axisymmetric inertial modes propagating in a spherical shell when viscosity tends to zero. We identify three kinds of eigenmodes whose eigenvalues follow very different laws as the Ekman number $E$ becomes very small. First are modes associated with attractors of characteristics that are made of thin shear layers closely following the periodic orbit traced by the characteristic attractor. Second are modes made of shear layers that connect the critical latitude singularities of the two hemispheres of the inner boundary of the spherical shell. Third are quasi-regular modes associated with the frequency of neutral periodic orbits of characteristics. We thoroughly analyse a subset of attractor modes for which numerical solutions point to an asymptotic law governing the eigenvalues. We show that three length scales proportional to $E^{1/6}$, $E^{1/4}$ and $E^{1/3}$ control the shape of the shear layers that are associated with these modes. These scales point out the key role of the small parameter $E^{1/12}$ in these oscillatory flows. With a simplified model of the viscous Poincaré equation, we can give an approximate analytical formula that reproduces the velocity field in such shear layers. Finally, we also present an analysis of the quasi-regular modes whose frequencies are close to $\sin (\unicode[STIX]{x03C0}/4)$ and explain why a fluid inside a spherical shell cannot respond to any periodic forcing at this frequency when viscosity vanishes.


2018 ◽  
Vol 843 ◽  
pp. 355-381 ◽  
Author(s):  
Kélig Aujogue ◽  
Alban Pothérat ◽  
Binod Sreenivasan ◽  
François Debray

This paper experimentally investigates the convection in a rapidly rotating tangent cylinder (TC), for Ekman numbers down to $E=3.36\times 10^{-6}$. The apparatus consists of a hemispherical fluid vessel heated in its centre by a protruding heating element of cylindrical shape. The resulting convection that develops above the heater, i.e. within the TC, is shown to set in for critical Rayleigh numbers and wavenumbers respectively scaling as $Ra_{c}\sim E^{-4/3}$ and $a_{c}\sim E^{-1/3}$ with the Ekman number $E$. Although exhibiting the same exponents as for plane rotating convection, these laws reflect much larger convective plumes at onset. The structure and dynamics of supercritical plumes are in fact closer to those found in solid rotating cylinders heated from below, suggesting that the confinement within the TC induced by the Taylor–Proudman constraint influences convection in a similar way as solid walls would do. There is a further similarity in that the critical modes in the TC all exhibit a slow retrograde precession at onset. In supercritical regimes, the precession evolves into a thermal wind with a complex structure featuring retrograde rotation at high latitude and either prograde or retrograde rotation at low latitude (close to the heater), depending on the criticality and the Ekman number. The intensity of the thermal wind measured by the Rossby number $Ro$ scales as $Ro\simeq 5.33(Ra_{q}^{\ast })^{0.51}$ with the Rayleigh number based on the heat flux $Ra_{q}^{\ast }\in [10^{-9},10^{-6}]$. This scaling is in agreement with heuristic predictions and previous experiments where the thermal wind is determined by the azimuthal curl of the balance between the Coriolis force and buoyancy. Within the range $Ra\in [2\times 10^{7},10^{9}]$ which we explored, we also observe a transition in the heat transfer through the TC from a diffusivity-free regime where $Nu\simeq 0.38E^{2}Ra^{1.58}$ to a rotation-independent regime where $Nu\simeq 0.2Ra^{0.33}$.


2018 ◽  
Vol 842 ◽  
pp. 469-494 ◽  
Author(s):  
Ke Wu ◽  
Bruno D. Welfert ◽  
Juan M. Lopez

The flow response of a rapidly rotating fluid-filled cube to low-amplitude librational forcing is investigated numerically. Librational forcing is the harmonic modulation of the mean rotation rate. The rotating cube supports inertial waves which may be excited by libration frequencies less than twice the rotation frequency. The response is comprised of two main components: resonant excitation of the inviscid inertial eigenmodes of the cube, and internal shear layers whose orientation is governed by the inviscid dispersion relation. The internal shear layers are driven by the fluxes in the forced boundary layers on walls orthogonal to the rotation axis and originate at the edges where these walls meet the walls parallel to the rotation axis, and are hence called edge beams. The relative contributions to the response from these components is obscured if the mean rotation period is not small enough compared to the viscous dissipation time, i.e. if the Ekman number is too large. We conduct simulations of the Navier–Stokes equations with no-slip boundary conditions using parameter values corresponding to a recent set of laboratory experiments, and reproduce the experimental observations and measurements. Then, we reduce the Ekman number by one and a half orders of magnitude, allowing for a better identification and quantification of the contributions to the response from the eigenmodes and the edge beams.


2017 ◽  
Vol 826 ◽  
pp. 653-675 ◽  
Author(s):  
Stéphane Le Dizès ◽  
Michael Le Bars

In this work, we analyse the internal shear layer structures generated by the libration of an axisymmetric object in an unbounded fluid rotating at a rotation rate $\unicode[STIX]{x1D6FA}^{\ast }$ using direct numerical simulation and small Ekman number asymptotic analysis. We consider weak libration amplitude and libration frequency $\unicode[STIX]{x1D714}^{\ast }$ within the inertial wave interval $(0,2\unicode[STIX]{x1D6FA}^{\ast })$ such that the fluid dynamics is mainly described by a linear axisymmetric harmonic solution. The internal shear layer structures appear along the characteristic cones of angle $\unicode[STIX]{x1D703}_{c}=\text{acos}(\unicode[STIX]{x1D714}^{\ast }/(2\unicode[STIX]{x1D6FA}^{\ast }))$ which are tangent to the librating object at so-called critical latitudes. These layers correspond to thin viscous regions where the singularities of the inviscid solution are smoothed. We assume that the velocity field in these layers is described by the class of similarity solutions introduced by Moore & Saffman (Phil. Trans. R. Soc. Lond. A, vol. 264, 1969, pp. 597–634). These solutions are characterized by two parameters only: a real parameter $m$, which measures the strength of the underlying singularity, and a complex amplitude coefficient $C_{0}$. We first analyse the case of a disk for which a general asymptotic solution for small Ekman numbers is known when the disk is in a solid plane. We demonstrate that the numerical solutions obtained for a free disk and for a disk in a solid plane are both well described by the asymptotic solution and by its similarity form within the internal shear layers. For the disk, we obtain a parameter $m=1$ corresponding to a Dirac source at the edge of the disk and a coefficient $C_{0}\propto E^{1/6}$ where $E$ is the Ekman number. The case of a smoothed librating object such as a spheroid is found to be different. By asymptotically matching the boundary layer solution to similarity solutions close to a critical latitude on the surface, we show that the adequate parameter $m$ for the similarity solution is $m=5/4$, leading to a coefficient $C_{0}\propto E^{1/12}$, that is larger than for the case of a disk for small Ekman numbers. A simple general expression for $C_{0}$ valid for any axisymmetric object is obtained as a function of the local curvature radius at the critical latitude in agreement with this change of scaling. This result is tested and validated against direct numerical simulations.


Author(s):  
Wenjiao Qi ◽  
Qinghua Deng ◽  
Zhenping Feng ◽  
Qi Yuan

This paper aims at proposing a feasible method to determine an appropriate disc spacing distance in the design of Tesla turbines. Therefore, a typical Tesla turbine with seven different disc spacing distances was calculated numerically at different rotational speeds to investigate the influence of disc spacing distance on the aerodynamic performance and flow field of Tesla turbines and further to put forward the method. The results show that the isentropic efficiency of Tesla turbines peaks when the disc spacing distance gets its optimal value, and it decreases quickly as the disc spacing distance decreases from its optimal value. What’s more, the dimensionless parameter Ekman number is applied to determine an appropriate disc spacing distance in the design of Tesla turbines. There’s an optimal value of the Ekman number that Tesla turbines obtain its best performance, and it is influenced by the rotational speed. Meanwhile, the optimal value of the dimensionless rotor inlet tangential velocity difference which decides the rotational speed is also affected by the disc spacing distance. Thus, the determination of the optimal values of the dimensionless rotor inlet tangential velocity difference and the Ekman number is a cyclic iterative process to make them at their optimal values or in their optimal ranges respectively.


2016 ◽  
Vol 796 ◽  
pp. 306-317 ◽  
Author(s):  
Xing Wei

For understanding the dissipation in a rotating flow when resonance occurs, we study the rotating flow driven by the harmonic force in a periodic box. Both the linear and nonlinear regimes are studied. The various parameters such as the force amplitude $a$, the force frequency ${\it\omega}$, the force wavenumber $k$ and the Ekman number $E$ are investigated. In the linear regime, the dissipation at the resonant frequency scales as $E^{-1}k^{-2}$, and it is much stronger than the dissipation at the non-resonant frequencies on large scales and at low Ekman numbers. In the nonlinear regime, at the resonant frequency the effective dissipation (dissipation normalised with the square of the force amplitude) is lower than in the linear regime and it decreases with increasing force amplitude. This nonlinear suppression effect is significant near the resonant frequency but negligible far away from the resonant frequency. Opposite to the linear regime, in the nonlinear regime at the resonant frequency the lower Ekman number leads to lower dissipation because of the stronger nonlinear effect. This work implies that the previous linear calculations overestimated the tidal dissipation, which is important for understanding the tides in stars and giant planets.


2015 ◽  
Vol 8 (4) ◽  
pp. 781-791 ◽  
Author(s):  
Muhammad asjad Imran ◽  
Dumitru Vieru ◽  
Itrat Abbas Mirza ◽  
◽  
◽  
...  

2015 ◽  
Vol 27 (10) ◽  
pp. 106602 ◽  
Author(s):  
Kélig Aujogue ◽  
Alban Pothérat ◽  
Binod Sreenivasan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document