scholarly journals On ice-induced instability in free-surface flows

2007 ◽  
Vol 577 ◽  
pp. 25-52 ◽  
Author(s):  
EVGENIY SHAPIRO ◽  
SERGEI TIMOSHIN

The problem of stability of a water-coated ice layer is investigated for a free-surface flow of a thin water film down an inclined plane. An asymptotic (double-deck) theory is developed for a flow with large Reynolds and Froude numbers which is then used to investigate linear two-dimensional, three-dimensional and nonlinear two-dimensional stability characteristics. A new mode of upstream-propagating instability arising from the interaction of the ice surface with the flow is discovered and its properties are investigated. In the linear limit, closed-form expressions for the dispersion relation and neutral curves are obtained for the case ofPr= 1. For the general case, the linear stability problem is solved numerically and the applicability of the solution withPr= 1 is analysed. Nonlinear double-deck equations are solved with a novel global-marching-type scheme and the effects of nonlinearity are investigated. An explanation of the physical mechanism leading to the upstream propagation of instability waves is provided.

Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 350
Author(s):  
Georgios A. Leftheriotis ◽  
Iason A. Chalmoukis ◽  
Guillermo Oyarzun ◽  
Athanassios A. Dimas

An advanced numerical model is presented for the simulation of wave-induced free-surface flow, utilizing an efficient hybrid parallel implementation. The model is based on the solution of the Navier–Stokes equations using large-eddy simulation of large-scale coastal free-surface flows. The three-dimensional immersed boundary method was used for the enforcement of the no-slip boundary condition on the bed surface. The water-air interface was tracked using the level-set method. The numerical model was effectively validated against laboratory measurements involving wave propagation over a flatbed with an elliptical shoal, whose presence induces combined wave refraction and diffraction phenomena. The parallel implementation of the model enabled the efficient simulation of depth-resolved, wave-induced, three-dimensional, free-surface flow; the model parallel efficiency and strong scaling are quantitatively demonstrated.


2011 ◽  
Vol 23 (7) ◽  
pp. 072101 ◽  
Author(s):  
Osama Ogilat ◽  
Scott W. McCue ◽  
Ian W. Turner ◽  
John A. Belward ◽  
Benjamin J. Binder

Author(s):  
I. L. Collings

AbstractSolutions are found to two cusp-like free-surface flow problems involving the steady motion of an ideal fluid under the infinite-Froude-number approximation. The flow in each case is due to a submerged line source or sink, in the presence of a solid horizontal base.


Sign in / Sign up

Export Citation Format

Share Document