scholarly journals Triple-point shear layers in gaseous detonation waves

2007 ◽  
Vol 586 ◽  
pp. 205-248 ◽  
Author(s):  
L. MASSA ◽  
J. M. AUSTIN ◽  
T. L. JACKSON

Recent experiments have shown intriguing regions of intense luminescence or ‘hotspots’ in the vicinity of triple-point shear layers in propagating gaseous detonation waves. Localized explosions have also been observed to develop in these fronts. These features were observed in higher effective activation energy mixtures, but not in lower effective activation energy mixtures. The increased lead shock oscillation through a cell cycle in higher activation energy mixtures may result in a significantly increased disparity in the induction time on either side of the triple-point shear layer, and thus an enhanced mixing between reacted and non-reacted streams supported by Kelvin–Helmholtz instability. The relation between the shear-layer instability and the mixture effective activation energy is analysed by carrying out a spatial linear stability study for three mixtures with different activation energies and injection conditions that correspond to the experimental conditions. The role of vortical structures associated with Kelvin–Helmholtz instability in the formation of localized ignition is investigated by performing two-dimensional Navier–Stokes simulations with detailed chemical kinetics and transport. In the low activation energy mixture, large-scale vortical structures are observed to occur downstream of the induction distance; these structures do not have a noticeable effect on the reaction. In higher effective activation energy mixtures, a thin transverse ignition front develops near the interface between the two gas streams and results in a combustion structure decoupled from the entrainment region. The decoupling leads to attenuation of the instability growth rate when compared to frozen calculations, and a reduced heat release in the high vorticity region. The analysis indicates the instability plays a modest role in ignition events for high activation energy mixtures. The formation of localized explosions observed in high activation energy systems is instead linked to the impossibility of a one-dimensional reactive combustion wave supported by the injection conditions. In the absence of curvature effects and stream-tube divergence, a system of shock waves is formed which spreads the ignition to the cold gas stream.

2007 ◽  
Vol 21 (01) ◽  
pp. 127-132
Author(s):  
T. R. YANG ◽  
G. ILONCA ◽  
V. TOMA ◽  
P. BALINT ◽  
M. BODEA

The scaling behavior of the effective activation energy of high-quality epitaxial c-oriented Bi 2 Sr 2 Ca ( Cu 1-x Co x)2 O d thin films with 0≤x ≤0.025 has been studied as a function of temperature and magnetic field. For all samples, the effective activation energy scales as U(T, μoH)=Uo(1-T/T c )mHn with exponent m=1.25±0.03, n=-1/2 and the field scaling 1/μoH and -UμoH for thick films and ultra thin films, respectively. The results are discussed taking into account of the influence of the Co substitution with a model in which U(T, H) arises from plastic deformations of the viscous flux liquid above the vortex-glass transition temperature.


1999 ◽  
Vol 14 (8) ◽  
pp. 3200-3203 ◽  
Author(s):  
S. K. Sharma ◽  
F. Faupel

The values of effective activation energy (Q) and pre-exponential factor (D0) reported in the literature for diffusion in the novel bulk metallic glasses, both in the glassy and the deeply supercooled liquid regions, are found to follow the same correlation as reported earlier in conventional metallic glasses, namely D0 = A exp(Q/B), where A and B are fitting parameters with values A = 4.8 × 10−19 m2 s−1 and B = 0.056 eV atom−1. A possible explanation for the observed values of A and B is given by combining an activation energy and a free volume term. The interpretation favors a cooperative mechanism for diffusion in the glassy and deeply supercooled liquid states.


2006 ◽  
Vol 20 (29) ◽  
pp. 1847-1852
Author(s):  
ALI IHSAN DEMIREL ◽  
SALIM ORAK

The resistive properties and activation energy of YBa 2 Cu 3 O 7-ρ ( YBCO ) superconducting materials change in magnetic field. It is explained that magnetoresistive behavior in terms of the presence of two-dimensional vortices being pinned effectively when they are perpendicular to the CuO 2 planes and an exponential behavior of the activation energy versus the applied field was obtained. The resulting activation energies ranging from 1 to 5 Tesla were attributed to inter-granular flux creep process.


1996 ◽  
Vol 421 ◽  
Author(s):  
Wim Geerts ◽  
J.D. MacKenzie ◽  
C.R. Abernathy ◽  
S.J Pearton ◽  
Thomas Schmiedel

AbstractThe temperature dependence of the Hall voltage and resistivity of highly carbon doped GaN were measured. From the sign of the Hall voltage, the material appears to be p-type. Charge transport takes place in an impurity band and the valence band. The effective activation energy as estimated from the maximum in the temperature versus Hall voltage relation is 10–30 meV.


Sign in / Sign up

Export Citation Format

Share Document