Turbulent flow through a rectangular duct with a partially blocked exit

2007 ◽  
Vol 592 ◽  
pp. 51-78
Author(s):  
T. Y. HSU ◽  
H. ELORANTA ◽  
P. SAARENRINNE ◽  
T. WEI

This paper contains data on and insights into the origins of turbulence associated with a partial blockage at the exit of a two-dimensional, laminar, horizontal duct flow. In essence, this is the upstream approach region of the forward-facing step problem. This work was motivated by the need to identify and control unsteady streamwise vortices generated in the headbox (i.e. contraction section) of an industrial paper machine. The duct was 57.2 cm wide × 10.16 cm high, with up to a 50 % blockage. Experiments were scaled to match Reynolds numbers found in paper machines; exit velocities were as large as 200 cm s−1. The goal of the research was to map the flow at the exit and to examine the response of the flat-plate turbulent boundary layer on the opposing wall under the partial blockage. Laser-induced fluorescence (LIF) and digital particle image velocimetry (DPIV) were used to examine flow in three orthogonal planes at various stations upstream of the duct exit. Mean and instantaneous DPIV vector fields clearly show that an unsteady spanwise vortex forms in the corner formed by the top nozzle wall and partial blockage which, in turn, gives rise to turbulent streamwise vortices.A turbulent boundary layer was initiated on the duct wall opposite the blockage, upstream of a two-dimensional contraction. Results show that even though the acceleration parameter, K, exceeded the nominal critical level of 3.0 × 10−6 for relaminarization beneath the blockage, the flow did not reach a quasi-laminar state. In addition, there did not appear to be direct interaction between unsteady vortex formation at the partial blockage on the upper wall and bottom-wall turbulent boundary layer structures.

1998 ◽  
Vol 363 ◽  
pp. 115-151 ◽  
Author(s):  
D. B. GOLDSTEIN ◽  
T.-C. TUAN

The effects of riblets on one wall of a channel bounding fully developed turbulent flow are investigated. Various perturbation elements including wires, fins and slots are modelled in order to understand the effects of riblets. It is found that widely spaced riblets, fins and wires create a substantial increase in turbulent activity just above the element. These elements are also found to produce a remarkable pattern of secondary mean flows consisting of matched pairs of streamwise vortices. The secondary flows occur only if the bulk flow is turbulent and their characteristics depend on element geometry. It is suggested that these secondary flows are strongly linked with the increase in drag experienced by widely spaced riblets in experimental studies. The secondary flows are probably caused by two-dimensional spanwise sloshing of the flow, inherent in a turbulent boundary layer, interacting with the stream-aligned element. This two-dimensional mechanism is investigated with a series of two-dimensional simulations of sloshing flow over isolated elements. Grid resolution and domain size checks are made throughout the investigation.


2011 ◽  
Vol 46 (6) ◽  
pp. 917-934 ◽  
Author(s):  
V. Ya. Borovoi ◽  
I. V. Egorov ◽  
A. Yu. Noev ◽  
A. S. Skuratov ◽  
I. V. Struminskaya

1979 ◽  
Vol 94 (2) ◽  
pp. 243-268 ◽  
Author(s):  
A. J. Smits ◽  
J. A. Eaton ◽  
P. Bradshaw

Measurements have been made in the flow over an axisymmetric cylinder-flare body, in which the boundary layer developed in axial flow over a circular cylinder before diverging over a conical flare. The lateral divergence, and the concave curvature in the transition section between the cylinder and the flare, both tend to destabilize the turbulence. Well downstream of the transition section, the changes in turbulence structure are still significant and can be attributed to lateral divergence alone. The results confirm that lateral divergence alters the structural parameters in much the same way as longitudinal curvature, and can be allowed for by similar empirical formulae. The interaction between curvature and divergence effects in the transition section leads to qualitative differences between the behaviour of the present flow, in which the turbulence intensity is increased everywhere, and the results of Smits, Young & Bradshaw (1979) for a two-dimensional flow with the same curvature but no divergence, in which an unexpected collapse of the turbulence occurred downstream of the curved region.


2013 ◽  
Vol 733 ◽  
pp. 370-393 ◽  
Author(s):  
Timothy N. Jukes ◽  
Kwing-So Choi

AbstractThe streamwise vortices generated by dielectric-barrier-discharge plasma actuators in the laminar boundary layer were investigated using particle image velocimetry to understand the vortex-formation mechanisms. The plasma vortex generator was oriented along the primary flow direction to produce a body force in the spanwise direction. This created a spanwise-directed wall jet which interacted with the oncoming boundary layer to form a coherent streamwise vortex. It was found that the streamwise vortices were formed by the twisting and folding of the spanwise vorticity in the oncoming boundary layer into the outer shear layer of the spanwise wall jet, which added its own vorticity to increase the circulation along the actuator length. This is similar to the delta-shaped, vane-type vortex generator, except that the circulation was enhanced by the addition of the vorticity in the plasma jet. It was also observed that the plasma vortex was formed close to the wall with an enhanced wall-ward entrainment, which created strong downwash above the actuator.


2019 ◽  
Vol 874 ◽  
pp. 720-755 ◽  
Author(s):  
Rishabh Ishar ◽  
Eurika Kaiser ◽  
Marek Morzyński ◽  
Daniel Fernex ◽  
Richard Semaan ◽  
...  

We present the first general metric for attractor overlap (MAO) facilitating an unsupervised comparison of flow data sets. The starting point is two or more attractors, i.e. ensembles of states representing different operating conditions. The proposed metric generalizes the standard Hilbert-space distance between two snapshot-to-snapshot ensembles of two attractors. A reduced-order analysis for big data and many attractors is enabled by coarse graining the snapshots into representative clusters with corresponding centroids and population probabilities. For a large number of attractors, MAO is augmented by proximity maps for the snapshots, the centroids and the attractors, giving scientifically interpretable visual access to the closeness of the states. The coherent structures belonging to the overlap and disjoint states between these attractors are distilled by a few representative centroids. We employ MAO for two quite different actuated flow configurations: a two-dimensional wake with vortices in a narrow frequency range and three-dimensional wall turbulence with a broadband spectrum. In the first application, seven control laws are applied to the fluidic pinball, i.e. the two-dimensional flow around three circular cylinders whose centres form an equilateral triangle pointing in the upstream direction. These seven operating conditions comprise unforced shedding, boat tailing, base bleed, high- and low-frequency forcing as well as two opposing Magnus effects. In the second example, MAO is applied to three-dimensional simulation data from an open-loop drag reduction study of a turbulent boundary layer. The actuation mechanisms of 38 spanwise travelling transversal surface waves are investigated. MAO compares and classifies these actuated flows in agreement with physical intuition. For instance, the first feature coordinate of the attractor proximity map correlates with drag for the fluidic pinball and for the turbulent boundary layer. MAO has a large spectrum of potential applications ranging from a quantitative comparison between numerical simulations and experimental particle-image velocimetry data to the analysis of simulations representing a myriad of different operating conditions.


1996 ◽  
Vol 326 ◽  
pp. 151-179 ◽  
Author(s):  
Junhui Liu ◽  
Ugo Piomelli ◽  
Philippe R. Spalart

The interaction between a zero-pressure-gradient turbulent boundary layer and a pair of strong, common-flow-down, streamwise vortices with a sizeable velocity deficit is studied by large-eddy simulation. The subgrid-scale stresses are modelled by a localized dynamic eddy-viscosity model. The results agree well with experimental data. The vortices drastically distort the boundary layer, and produce large spanwise variations of the skin friction. The Reynolds stresses are highly three-dimensional. High levels of kinetic energy are found both in the upwash region and in the vortex core. The two secondary shear stresses are significant in the vortex region, with magnitudes comparable to the primary one. Turbulent transport from the immediate upwash region is partly responsible for the high levels of turbulent kinetic energy in the vortex core; its effect on the primary stress 〈u′v′〉 is less significant. The mean velocity gradients play an important role in the generation of 〈u′v′〉 in all regions, while they are negligible in the generation of turbulent kinetic energy in the vortex core. The pressure-strain correlations are generally of opposite sign to the production terms except in the vortex core, where they have the same sign as the production term in the budget of 〈u′v′〉. The results highlight the limitations of the eddy-viscosity assumption (in a Reynolds-averaged context) for flows of this type, as well as the excessive diffusion predicted by typical turbulence models.


Sign in / Sign up

Export Citation Format

Share Document