On the generation of large-scale structures in a homogeneous eddy field

2010 ◽  
Vol 668 ◽  
pp. 76-99 ◽  
Author(s):  
TIMOUR RADKO

An analytical theory is developed which illustrates dynamics of the spontaneous generation of large-scale structures in the unforced two-dimensional eddying flows. The eddy field is represented by the closely packed array of standing coherent vortices whose intensity is weakly modulated by the long-wavelength perturbations introduced into the system. The asymptotic multiscale analysis makes it possible to identify instabilities resulting from the positive feedback of the background eddies on large-scale perturbations. Initially, these instabilities amplify at a rate proportional to the square root of their wavenumber. Linear growth is arrested when the amplitude of the long-wavelength perturbations reaches the level of background eddies. The subsequent evolutionary pattern is characterized by the emergence of relatively sharp features in the large-scale streamfunction field – features suggestive of the coherent jets commonly observed in eddying geophysical flows. The proposed solutions differ substantially from their counterparts in forced-dissipative systems, exemplified by the canonical model of Kolmogorov flow. The asymptotic model is successfully tested against numerical simulations.

2016 ◽  
Vol 809 ◽  
pp. 316-344 ◽  
Author(s):  
Timour Radko

A theoretical model is developed which illustrates the dynamics of the spontaneous generation of large-scale structures in baroclinically unstable eddying flows. Techniques of asymptotic multiscale analysis are used to identify instabilities resulting from the positive feedback of the background eddies on large-scale perturbations. The novelty of the proposed approach lies in the choice of a dynamically consistent time-dependent background eddy field, which is taken from simulations of baroclinic instability in the Phillips two-layer system. The resulting solutions differ considerably from those of traditional multiscale models, in which the background eddy field is represented by steady analytical patterns. The present formulation makes it possible to (i) test the multiscale theory against the corresponding numerical simulations, (ii) unambiguously interpret the key physical processes at play and (iii) rationalize the emergence of large-scale patterns for certain background parameters. While the proposed approach to multiscale modelling is illustrated on a particular example of the Phillips baroclinic instability model, it is our belief that the presented technique is readily adaptable to a wide range of applications.


2019 ◽  
Vol 862 ◽  
pp. 889-923 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

Geophysical turbulence is observed to self-organize into large-scale flows such as zonal jets and coherent vortices. Previous studies of barotropic $\unicode[STIX]{x1D6FD}$-plane turbulence have shown that coherent flows emerge from a background of homogeneous turbulence as a bifurcation when the turbulence intensity increases. The emergence of large-scale flows has been attributed to a new type of collective, symmetry-breaking instability of the statistical state dynamics of the turbulent flow. In this work, we extend the analysis to stratified flows and investigate turbulent self-organization in a two-layer fluid without any imposed mean north–south thermal gradient and with turbulence supported by an external random stirring. We use a second-order closure of the statistical state dynamics, that is termed S3T, with an appropriate averaging ansatz that allows the identification of statistical turbulent equilibria and their structural stability. The bifurcation of the statistically homogeneous equilibrium state to inhomogeneous equilibrium states comprising zonal jets and/or large-scale waves when the energy input rate of the excitation passes a critical threshold is analytically studied. Our theory predicts that there is a large bias towards the emergence of barotropic flows. If the scale of excitation is of the order of (or larger than) the deformation radius, the large-scale structures are barotropic. Mixed barotropic–baroclinic states with jets and/or waves arise when the excitation is at scales shorter than the deformation radius with the baroclinic component of the flow being subdominant for low energy input rates and insignificant for higher energy input rates. The predictions of the S3T theory are compared with nonlinear simulations. The theory is found to accurately predict both the critical transition parameters and the scales of the emergent structures but underestimates their amplitude.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


2015 ◽  
Vol 12 (108) ◽  
pp. 20150044 ◽  
Author(s):  
Dervis C. Vural ◽  
Alexander Isakov ◽  
L. Mahadevan

Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations.


2011 ◽  
Vol 418 (1) ◽  
pp. 214-229 ◽  
Author(s):  
Marco Baldi ◽  
Valeria Pettorino ◽  
Luca Amendola ◽  
Christof Wetterich

Sign in / Sign up

Export Citation Format

Share Document