statistical state
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 2)

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1087
Author(s):  
Eun-jin Kim ◽  
Adrian-Josue Guel-Cortez

Information processing is common in complex systems, and information geometric theory provides a useful tool to elucidate the characteristics of non-equilibrium processes, such as rare, extreme events, from the perspective of geometry. In particular, their time-evolutions can be viewed by the rate (information rate) at which new information is revealed (a new statistical state is accessed). In this paper, we extend this concept and develop a new information-geometric measure of causality by calculating the effect of one variable on the information rate of the other variable. We apply the proposed causal information rate to the Kramers equation and compare it with the entropy-based causality measure (information flow). Overall, the causal information rate is a sensitive method for identifying causal relations.


2021 ◽  
Vol 12 ◽  
pp. 215013272110042
Author(s):  
Makazlieva Tanja ◽  
Vaskova Olivija ◽  
Stojanoski Sinisha ◽  
Manevska Nevena ◽  
Miladinova Daniela ◽  
...  

Objective: We have set as objective to analyze epidemiological data of diagnosed thyroid carcinoma (TC) cases, incidence and prevalence rate by gender, age, histopathological type, and statistical regions in R. of N. Macedonia during the period 1999 to 2015. Material and Methods: Retrospective analysis of medical data collected from the 2 state thyroid departments. Inclusion criteria included newly diagnosed cases of TC in appropriate years for the period 1999 to 2015. We have evaluated: yearly incidence rate, incidence and prevalence by gender, age, the distribution in 8 statistical state regions and histopathological types and subtypes representation. Results: A total number of 422 TC patients were detected, average incidence rate of 1.22/105, with most prevalent papillary TCs79.5%, followed by follicular 10.9%, medullar 4.1%, anaplastic 3.1%, and other rare types with 2.3%. The highest incidence rate was detected in Skopje region, while the lowest in Southeast and the Polog region. The total prevalence rate for the female gender was 32.61/104 and for male 9.27/104 (f/m ratio = 3.52:1), with lowest female/male difference found in the elderly > 65 years (f/m = 2.21/1). Conclusion: Compared with regional epidemiological data we can conclude that Republic of N. Macedonia has very low incidence and prevalence rate, while female/male ratio was similar to that described in the literature. Our low incidence and prevalence rate may be due to 2 possible reasons, 1 would be insufficient diagnosis of only small portion of the real cases in the population, or the second reason may be a real low incidence resulting of specific etiopathogenetic circumstances.


2019 ◽  
Vol 76 (3) ◽  
pp. 919-945 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Navid C. Constantinou ◽  
Petros J. Ioannou

Abstract Zonal jets in a barotropic setup emerge out of homogeneous turbulence through a flow-forming instability of the homogeneous turbulent state (zonostrophic instability), which occurs as the turbulence intensity increases. This has been demonstrated using the statistical state dynamics (SSD) framework with a closure at second order. Furthermore, it was shown that for small supercriticality the flow-forming instability follows Ginzburg–Landau (G–L) dynamics. Here, the SSD framework is used to study the equilibration of this flow-forming instability for small supercriticality. First, we compare the predictions of the weakly nonlinear G–L dynamics to the fully nonlinear SSD dynamics closed at second order for a wide range of parameters. A new branch of jet equilibria is revealed that is not contiguously connected with the G–L branch. This new branch at weak supercriticalities involves jets with larger amplitude compared to the ones of the G–L branch. Furthermore, this new branch continues even for subcritical values with respect to the linear flow-forming instability. Thus, a new nonlinear flow-forming instability out of homogeneous turbulence is revealed. Second, we investigate how both the linear flow-forming instability and the novel nonlinear flow-forming instability are equilibrated. We identify the physical processes underlying the jet equilibration as well as the types of eddies that contribute in each process. Third, we propose a modification of the diffusion coefficient of the G–L dynamics that is able to capture the evolution of weak jets at scales other than the marginal scale (side-band instabilities) for the linear flow-forming instability.


2019 ◽  
Vol 864 ◽  
Author(s):  
Joseph G. Fitzgerald ◽  
Brian F. Farrell

Horizontal density layers are commonly observed in stratified turbulence. Recent work (e.g. Taylor & Zhou, J. Fluid Mech., vol. 823, 2017, R5) has reinvigorated interest in the Phillips instability (PI), by which density layers form via negative diffusion if the turbulent buoyancy flux weakens as stratification increases. Theoretical understanding of PI is incomplete, in part because it remains unclear whether and by what mechanism the flux-gradient relationship for a given example of turbulence has the required negative-diffusion property. Furthermore, the difficulty of analysing the flux-gradient relation in evolving turbulence obscures the operating mechanism when layering is observed. These considerations motivate the search for an example of PI that can be analysed clearly. Here PI is shown to occur in two-dimensional Boussinesq sheared stratified turbulence maintained by stochastic excitation. PI is analysed using the second-order S3T closure of statistical state dynamics, in which the dynamics is written directly for statistical variables of the turbulence. The predictions of S3T are verified using nonlinear simulations. This analysis provides theoretical underpinning of PI based on the fundamental equations of motion that complements previous analyses based on phenomenological models of turbulence.


2019 ◽  
Vol 862 ◽  
pp. 889-923 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

Geophysical turbulence is observed to self-organize into large-scale flows such as zonal jets and coherent vortices. Previous studies of barotropic $\unicode[STIX]{x1D6FD}$-plane turbulence have shown that coherent flows emerge from a background of homogeneous turbulence as a bifurcation when the turbulence intensity increases. The emergence of large-scale flows has been attributed to a new type of collective, symmetry-breaking instability of the statistical state dynamics of the turbulent flow. In this work, we extend the analysis to stratified flows and investigate turbulent self-organization in a two-layer fluid without any imposed mean north–south thermal gradient and with turbulence supported by an external random stirring. We use a second-order closure of the statistical state dynamics, that is termed S3T, with an appropriate averaging ansatz that allows the identification of statistical turbulent equilibria and their structural stability. The bifurcation of the statistically homogeneous equilibrium state to inhomogeneous equilibrium states comprising zonal jets and/or large-scale waves when the energy input rate of the excitation passes a critical threshold is analytically studied. Our theory predicts that there is a large bias towards the emergence of barotropic flows. If the scale of excitation is of the order of (or larger than) the deformation radius, the large-scale structures are barotropic. Mixed barotropic–baroclinic states with jets and/or waves arise when the excitation is at scales shorter than the deformation radius with the baroclinic component of the flow being subdominant for low energy input rates and insignificant for higher energy input rates. The predictions of the S3T theory are compared with nonlinear simulations. The theory is found to accurately predict both the critical transition parameters and the scales of the emergent structures but underestimates their amplitude.


2018 ◽  
Vol 75 (12) ◽  
pp. 4201-4227 ◽  
Author(s):  
Joseph G. Fitzgerald ◽  
Brian F. Farrell

Abstract Vertically banded zonal jets are frequently observed in weakly or nonrotating stratified turbulence, with the quasi-biennial oscillation in the equatorial stratosphere and the ocean’s equatorial deep jets being two examples. Explaining the formation of jets in stratified turbulence is a fundamental problem in geophysical fluid dynamics. Statistical state dynamics (SSD) provides powerful methods for analyzing turbulent systems exhibiting emergent organization, such as banded jets. In SSD, dynamical equations are written directly for the evolution of the turbulence statistics, enabling direct analysis of the statistical interactions between the incoherent component of turbulence and the coherent large-scale structure component that underlie jet formation. A second-order closure of SSD, known as S3T, has previously been applied to show that meridionally banded jets emerge in barotropic β-plane turbulence via a statistical instability referred to as the zonostrophic instability. Two-dimensional Boussinesq turbulence provides a simple model of nonrotating stratified turbulence analogous to the β-plane model of planetary turbulence. Jets known as vertically sheared horizontal flows (VSHFs) often emerge in simulations of Boussinesq turbulence, but their dynamics is not yet clearly understood. In this work S3T analysis of the zonostrophic instability is extended to study VSHF emergence in two-dimensional Boussinesq turbulence using an analytical formulation of S3T amenable to perturbation stability analysis. VSHFs are shown to form via an instability that is analogous in stratified turbulence to the zonostrophic instability in β-plane turbulence. This instability is shown to be strikingly similar to the zonostrophic instability, suggesting that jet emergence in both geostrophic and nonrotating stratified turbulence may be understood as instances of the same generic phenomenon.


2018 ◽  
Vol 854 ◽  
pp. 544-590 ◽  
Author(s):  
Joseph G. Fitzgerald ◽  
Brian F. Farrell

Simulations of strongly stratified turbulence often exhibit coherent large-scale structures called vertically sheared horizontal flows (VSHFs). VSHFs emerge in both two-dimensional (2D) and three-dimensional (3D) stratified turbulence with similar vertical structure. The mechanism responsible for VSHF formation is not fully understood. In this work, the formation and equilibration of VSHFs in a 2D Boussinesq model of stratified turbulence is studied using statistical state dynamics (SSD). In SSD, equations of motion are expressed directly in the statistical variables of the turbulent state. Restriction to 2D turbulence facilitates application of an analytically and computationally attractive implementation of SSD referred to as S3T, in which the SSD is expressed by coupling the equation for the horizontal mean structure with the equation for the ensemble mean perturbation covariance. This second-order SSD produces accurate statistics, through second order, when compared with fully nonlinear simulations. In particular, S3T captures the spontaneous emergence of the VSHF and associated density layers seen in simulations of turbulence maintained by homogeneous large-scale stochastic excitation. An advantage of the S3T system is that the VSHF formation mechanism, which is wave–mean flow interaction between the emergent VSHF and the stochastically excited large-scale gravity waves, is analytically understood in the S3T system. Comparison with fully nonlinear simulations verifies that S3T solutions accurately predict the scale selection, dependence on stochastic excitation strength, and nonlinear equilibrium structure of the VSHF. These results constitute a theory for VSHF formation applicable to interpreting simulations and observations of geophysical examples of turbulent jets such as the ocean’s equatorial deep jets.


Sign in / Sign up

Export Citation Format

Share Document