scholarly journals Dynamics of inertial particles in a turbulent von Kármán flow

2011 ◽  
Vol 668 ◽  
pp. 223-235 ◽  
Author(s):  
R. VOLK ◽  
E. CALZAVARINI ◽  
E. LÉVÊQUE ◽  
J.-F. PINTON

We study the dynamics of neutrally buoyant particles with diameters varying in the range [1, 45] in Kolmogorov scale units (η) and Reynolds numbers based on Taylor scale (Reλ) between 590 and 1050. One component of the particle velocity is measured using an extended laser Doppler velocimetry at the centre of a von Kármán flow, and acceleration is derived by differentiation. We find that the particle acceleration variance decreases with increasing diameter with scaling close to (D/η)−2/3, in agreement with previous observations, and with a hint for an intermittent correction as suggested by arguments based on scaling of pressure spatial increments. The characteristic time of acceleration autocorrelation increases more strongly than previously reported in other experiments, and possibly varying linearly with D/η. Further analysis shows that the probability density functions of the acceleration have smaller wings for larger particles; their flatness decreases as well, as expected from the behaviour of pressure increments in turbulence when intermittency corrections are taken into account. We contrast our measurements with previous observations in wind-tunnel turbulent flows and numerical simulations.

2017 ◽  
Vol 830 ◽  
pp. 63-92 ◽  
Author(s):  
Andrew D. Bragg

In this paper we investigate, using theory and direct numerical simulations (DNS), the forward in time (FIT) and backward in time (BIT) probability density functions (PDFs) of the separation of inertial particle pairs in isotropic turbulence. In agreement with our earlier study (Bragg et al., Phys. Fluids, vol. 28, 2016, 013305), where we compared the FIT and BIT mean-square separations, we find that inertial particles separate much faster BIT than FIT, with the strength of the irreversibility depending upon the final/initial separation of the particle pair and their Stokes number $St$. However, we also find that the irreversibility shows up in subtle ways in the behaviour of the full PDF that it does not in the mean-square separation. In the theory, we derive new predictions, including a prediction for the BIT/FIT PDF for $St\geqslant O(1)$, and for final/initial separations in the dissipation regime. The prediction shows how caustics in the particle relative velocities in the dissipation range affect the scaling of the pair-separation PDF, leading to a PDF with an algebraically decaying tail. The predicted functional behaviour of the PDFs is universal, in that it does not depend upon the level of intermittency in the underlying turbulence. We also analyse the pair-separation PDFs for fluid particles at short times, and construct theoretical predictions using the multifractal formalism to describe the fluid relative velocity distributions. The theoretical and numerical results both suggest that the extreme events in the inertial particle-pair dispersion at the small scales are dominated by their non-local interaction with the turbulent velocity field, rather than due to the strong dissipation range intermittency of the turbulence itself. In fact, our theoretical results predict that for final/initial separations in the dissipation range, when $St\gtrsim 1$, the tails of the pair-separation PDFs decay faster as the Taylor Reynolds number $Re_{\unicode[STIX]{x1D706}}$ is increased, the opposite of what would be expected for fluid particles.


2014 ◽  
Vol 758 ◽  
Author(s):  
Matteo Bernardini

AbstractThe effect of the Reynolds number on the behaviour of inertial particles in wall-bounded turbulent flows is investigated through large-scale direct numerical simulations (DNS) of particle-laden canonical channel flow spanning almost a decade in the friction Reynolds number, from $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau } = 150$ to $\mathit{Re}_{\tau } = 1000$. Lagrangian particle tracking is used to study the motion of six different particle sets, described by a Stokes number in the range $\mathit{St} = 1\text {--}1000$. At all Reynolds numbers a strong segregation in the near-wall region is observed for particles characterized by intermediate Stokes number, in the range $\mathit{St} =10\text {--}100$. The wall-normal concentration profiles of such particles collapse in inner scaling, thus suggesting the independence of the turbophoretic drift from the large-scale outer motions. This observation is also supported by the spatial organization of the suspended phase in the inner layer, which is found to be universal with the Reynolds number. The deposition rate coefficient increases with $\mathit{Re}_{\tau }$ for a given $\mathit{St}$. Suitable inner and outer scalings are proposed to collapse the deposition curves across the available ranges of Reynolds and Stokes numbers for the different deposition regimes.


2015 ◽  
Vol 775 ◽  
pp. 436-463 ◽  
Author(s):  
Stephen M. de Bruyn Kops

Classical scaling arguments of Kolmogorov, Oboukhov and Corrsin (KOC) are evaluated for turbulence strongly influenced by stable stratification. The simulations are of forced homogeneous stratified turbulence resolved on up to$8192\times 8192\times 4096$grid points with buoyancy Reynolds numbers of$\mathit{Re}_{b}=13$, 48 and 220. A simulation of isotropic homogeneous turbulence with a mean scalar gradient resolved on$8192^{3}$grid points is used as a benchmark. The Prandtl number is unity. The stratified flows exhibit KOC scaling only for second-order statistics when$\mathit{Re}_{b}=220$; the$4/5$law is not observed. At lower$\mathit{Re}_{b}$, the$-5/3$slope in the spectra occurs at wavenumbers where the bottleneck effect occurs in unstratified cases, and KOC scaling is not observed in any of the structure functions. For the probability density functions (p.d.f.s) of the scalar and kinetic energy dissipation rates, the lognormal model works as well for the stratified cases with$\mathit{Re}_{b}=48$and 220 as it does for the unstratified case. For lower$\mathit{Re}_{b}$, the dominance of the vertical derivatives results in the p.d.f.s of the dissipation rates tending towards bimodal. The p.d.f.s of the dissipation rates locally averaged over spheres with radius in the inertial range tend towards bimodal regardless of$\mathit{Re}_{b}$. There is no broad scaling range, but the intermittency exponents at length scales near the Taylor length are in the range of$0.25\pm 0.05$and$0.35\pm 0.1$for the velocity and scalar respectively.


2010 ◽  
Vol 661 ◽  
pp. 73-107 ◽  
Author(s):  
LIUBIN PAN ◽  
PAOLO PADOAN

We present a model for the relative velocity of inertial particles in turbulent flows that provides new physical insight into this problem. Our general formulation shows that the relative velocity has contributions from two terms, referred to as the ‘generalized acceleration’ and ‘generalized shear’, because they reduce to the well-known acceleration and shear terms in the Saffman–Turner limit. The generalized shear term represents particles' memory of the flow velocity difference along their trajectories and depends on the inertial particle pair dispersion backward in time. The importance of this backward dispersion in determining the particle relative velocity is emphasized. We find that our model with a two-phase separation behaviour, an early ballistic phase and a later tracer-like phase, as found by recent simulations for the forward (in time) dispersion of inertial particle pairs, gives good fits to the measured relative speeds from simulations at low Reynolds numbers. In the monodisperse case with identical particles, the generalized acceleration term vanishes and the relative velocity is determined by the generalized shear term. At large Reynolds numbers, our model gives a St1/2-dependence of the relative velocity on the Stokes number St in the inertial range for both the ballistic behaviour and the Richardson separation law. This leads to the same inertial-range scaling for the two-phase separation that well fits the simulation results. Our calculations for the bidisperse case show that, with the friction timescale of one particle fixed, the relative speed as a function of the other particle's friction time has a dip when the two timescales are similar. This indicates that similar-size particles tend to have stronger velocity correlation than different ones. We find that the primary contribution at the dip, i.e. for similar particles, is from the generalized shear term, while the generalized acceleration term is dominant for particles of very different sizes. Future numerical studies are motivated to check the accuracy of the assumptions made in our model and to investigate the backward-in-time dispersion of inertial particle pairs in turbulent flows.


Sign in / Sign up

Export Citation Format

Share Document