strong segregation
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 9 (4) ◽  
pp. 995-1011
Author(s):  
Odin Marc ◽  
Jens M. Turowski ◽  
Patrick Meunier

Abstract. The size of grains delivered to rivers by hillslope processes is thought to be a key factor controlling sediment transport, long-term erosion and the information recorded in sedimentary archives. Recently, models have been developed to estimate the grain size distribution produced in soil, but these models may not apply to active orogens where high erosion rates on hillslopes are driven by landsliding. To date, relatively few studies have focused on landslide grain size distributions. Here, we present grain size distributions (GSDs) obtained by grid-by-number sampling on 17 recent landslide deposits in Taiwan, and we compare these GSDs to the geometrical and physical properties of the landslides, such as their width, area, rock type, drop height and estimated scar depth. All slides occurred in slightly metamorphosed sedimentary units, except two, which occurred in younger unmetamorphosed shales, with a rock strength that is expected to be 3–10 times weaker than their metamorphosed counterparts. For 11 landslides, we did not observe substantial spatial variations in the GSD over the deposit. However, four landslides displayed a strong grain size segregation on their deposit, with the overall GSD of the downslope toe sectors being 3–10 times coarser than apex sectors. In three cases, we could also measure the GSD inside incised sectors of the landslides deposits, which presented percentiles that were 3–10 times finer than the surface of the deposit. Both observations could be due to either kinetic sieving or deposit reworking after the landslide failure, but we cannot explain why only some deposits had strong segregation. Averaging this spatial variability, we found the median grain size of the deposits to be strongly negatively correlated with drop height, scar width and depth. However, previous work suggests that regolith particles and bedrock blocks should coarsen with increasing depth, which is the inverse of our observations. Accounting for a model of regolith coarsening with depth, we found that the ratio of the estimated original bedrock block size to the deposit median grain size (D50) of the deposit was proportional to the potential energy of the landslide normalized to its bedrock strength. Thus, the studied landslides agree well with a published, simple fragmentation model, even if that model was calibrated on rock avalanches with larger volume and stronger bedrock than those featured in our dataset. Therefore, this scaling may serve for future modeling of grain size transfer from hillslopes to rivers, with the aim to better understanding landslide sediment evacuation and coupling to river erosional dynamics.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2259
Author(s):  
Marcos Vinícius Aquino Queirós ◽  
Watson Loh

In this work, we report the phase behavior of polyelectrolyte complex coacervates (PECs) of poly(acrylate) (PA−) and poly(diallyldimethylammonium) (PDADMA+) in the presence of inorganic salts. Titrations of the polyelectrolytes in their acidic and alkaline forms were performed to obtain the coacervates in the absence of their small counterions. This approach was previously applied to the preparation of polymer–surfactant complexes, and we demonstrate that it also succeeded in producing complexes free of small counterions with a low extent of Hofmann elimination. For phase behavior studies, two different molar masses of poly(acrylate) and two different salts were employed over a wide concentration range. It was possible to define the regions at which associative and segregative phase separation take place. The latter one was exploited in more details because the segregation phenomenon in mixtures of oppositely charged polyelectrolytes is scarcely reported. Phase composition analyses showed that there is a strong segregation for both PA− and PDADMA+, who are accompanied by their small counterions. These results demonstrate that the occurrence of poly-ion segregation in these mixtures depends on the anion involved: in this case, it was observed with NaCl, but not with Na2SO4.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. V. Louzguine-Luzgin ◽  
A. S. Trifonov ◽  
Yu. P. Ivanov ◽  
A. K. A. Lu ◽  
A. V. Lubenchenko ◽  
...  

AbstractShear-induced segregation, by particle size, is known in the flow of colloids and granular media, but is unexpected at the atomic level in the deformation of solid materials, especially at room temperature. In nanoscale wear tests of an Fe-based bulk metallic glass at room temperature, without significant surface heating, we find that intense shear localization under a scanned indenter tip can induce strong segregation of a dilute large-atom solute (Y) to planar regions that then crystallize as a Y-rich solid solution. There is stiffening of the material, and the underlying chemical and structural effects are characterized by transmission electron microscopy. The key influence of the soft Fe–Y interatomic interaction is investigated by ab-initio calculation. The driving force for the induced segregation, and its mechanisms, are considered by comparison with effects in other sheared media.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 674
Author(s):  
Christopher Beckwith ◽  
Georgi Djambazov ◽  
Koulis Pericleous ◽  
Tungky Subroto ◽  
Dmitry G. Eskin ◽  
...  

This study concerns the numerical simulation of two competing ultrasonic treatment (UST) strategies for microstructure refinement in the direct-chill (DC) casting of aluminium alloys. In the first, more conventional, case, the sonotrode vibrating at 17.3 kHz is immersed in the hop-top to treat the sump melt pool, in the second case, the sonotrode is inserted between baffles in the launder. It is known that microstructure refinement depends on the intensity of acoustic cavitation and the residence time of the treated fluid in the cavitation zone. The geometry, acoustic field intensity, induced flow velocities, and local temperature are factors which affect this treatment. The mathematical model developed in this work couples flow velocity, acoustics modified by cavitation, heat transfer, and solidification at the macroscale, with Lagrangian refiner particles, used to determine: (a) their residence time in the active zones, and (b) their eventual distribution in the sump as a function of the velocity field. This is the first attempt at using particle models as an efficient, though indirect, alternative to microstructure simulation, and the results indicate that UST in the launder, assisted with baffle separators, yields a more uniform distribution of refining particles, avoiding the strong acoustic streaming jet that, otherwise, accompanies hot-top treatment, and may lead to the strong segregation of refining particles. Experiments conducted in parallel to the numerical studies in this work appeared to support the results obtained in the simulation.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 540
Author(s):  
Robert Tuttle

Solidification based grain refinement has gained wide interest by both researchers and industry. This method provides a route for refinement in processes where thermomechanical approaches are ineffective. Prior research into 4130 and HY100 found very different responses when rare earth additions were made. The 4130 was effectively refined while HY100 showed no response. The cause of this difference was not determined. The research presented in this paper examined heats of 4130 and HY100 with rare earth silicide or EGR additions. Characterization included macrostructure examination, mechanical testing, thermal analysis, and electron microscopy. Refinement was observed only in the treated 4130 heats and corresponded to an increase in the peritectic temperature. The HY100 heats had no changes in macrostructure or solidification reactions. Rare earth containing inclusions of similar compositions were observed in the treated 4130 and HY100 heats. These inclusions appear to be a good fit for austenite based on the 4130 data. It was proposed that the unresponsiveness of HY100 was due to the strong segregation of nickel before the peritectic in that alloy. Nickel promotes austenite, and its segregation may provide a stronger driving force for its formation than the energy barrier reduction caused by the presence of rare earth inclusions.


2021 ◽  
Author(s):  
Odin Marc ◽  
Jens M. Turowski ◽  
Patrick Meunier

Abstract. The size of grains delivered to river by hillslopes processes is thought to be a key factor to better understand sediment transport, long-term erosion as well as sedimentary archives. Recently, models have been developed for the grain size distribution produced in soil, but they may not apply to active orogens where high erosion rates on hillslopes are driven by landsliding. Until now relatively few studies have focused on landslide grain size distributions. Here we present grain size distribution 5 (GSD) obtained by the grid-by-number sampling on 17 recent landslide deposits in Taiwan, and we compare it to the geometrical and physical properties of the landslides, such as their width, area, rock-type, drop height and estimated depth. All slides occurred in slightly metamorphosed sedimentary units, except two, which occurred in younger unmetamorphosed shales, with rock strength expected to be 3 to 10 times weaker from their metamorphosed counterparts. We found that 4 deposits displayed a strong grain-size segregation on their deposit with downslope toe deposits 3 to 10 times coarser than apex 10 deposits. In 3 cases, we could also measure the GSD inside the landslides that presented percentiles 3 to 10 times finer than the surface of the deposit. Both observations could be due to either kinetic sieving or deposit reworking after the landslide failure but we cannot explain why only some deposits had a strong segregation. Averaging this spatial variability we found the median grainsize of the deposits to be strongly negatively correlated to drop height, scar width and depth. However, previous work suggest that regolith particles and bedrock blocks should coarsen with increasing depth, opposite to our observation. 15 Accounting for a model of regolith coarsening with depth, we found that the ratio of the original bedrock block size and the D50 was proportional the potential energy of the landslide normalized to its bedrock strength. Thus the studied landslides agree well with a published, simple fragmentation model, even if that model was calibrated on much larger and much stronger rock avalanches than those featured in our dataset. This scaling may thus serve for future model of grain size transfer from hillslopes to river, trying to better understand landslide sediment evacuation and coupling to river erosional dynamics.


2021 ◽  
Vol 7 (11) ◽  
pp. eabf6667
Author(s):  
Can Yang ◽  
Chongze Hu ◽  
Congying Xiang ◽  
Hongbo Nie ◽  
Xinfu Gu ◽  
...  

Metal-ceramic interfaces are scientifically interesting and technologically important. However, the transition of chemical bonding character from a metal to a nonoxide ceramic is not well understood. The effects of solute segregation and interfacial structural transitions are even more elusive. In this study, aberration-corrected electron microscopy is combined with atomic-resolution energy-dispersive x-ray and electron energy loss spectroscopy to investigate Ti-, V-, and Cr-segregated WC-Co interfaces as model systems. The experiments reveal the general anisotropic formation of reconstructed trilayer-like superstructures with segregant-specific compositional profiles that facilitate the transition from covalent to metallic electronic structures. Density functional theory calculations confirm the gradual increasing metallicity from WC to Co in the interfacial trilayers via increasing metallic solute concentration. This study uncovers unprecedented details of the sophisticated interfacial superstructures at metal-ceramic interfaces. It sheds light on how a metal transits to a ceramic at a “general” interface with strong segregation.


2020 ◽  
Vol 32 (6) ◽  
pp. 675-696
Author(s):  
Joana Polednia ◽  
Ralf Dohmen ◽  
Katharina Marquardt

Abstract. We studied grain boundary diffusion and segregation of La, Fe, Mg, and Ti in a crystallographically defined grain boundary in yttrium aluminum garnet (YAG). Bi-crystals were synthesized by wafer bonding. Perpendicular to the grain boundary, a thin-film diffusion source of a La3.60Al4.40O12 was deposited by pulsed laser deposition. Diffusion anneals were performed at 1000 and 1450 ∘C. Via a gas phase small amounts of elements were added during the experiment. The element concentration distributions in our bi-crystals were mapped using analytical transmission electron microscopy (ATEM). Our results show strong segregation of La and Ti at the grain boundary. However, in the presence of Ti, the La concentrations dropped below the detection limit. Quantitative element distribution profiles along and across the grain boundary were fitted by a numerical diffusion model for our bi-crystal geometry that considers the segregation of elements into the grain boundary. The shape of the diffusion profiles of Fe requires the presence of two diffusion modes, e.g., the co-diffusion of Fe2+ as well as Fe3+. The absence of a detectable concentration gradient along the grain boundary in many experiments allows a minimum value to be determined for the product of sDgb. The resulting sDgb are a minimum of 7 orders of magnitude larger than their respective volume diffusion coefficient, specifically for La = 10−14 m2 s−1, Fe = 10−11 m2 s−1, Mg = Si = 10−12 m2 s−1, and Ti = 10−14 m2 s−1 at 1450 ∘C. Additionally, we model the effect of convolution arising from the given spatial resolution of our analysis with the resolution of our modeled system. Such convolution effects result in a non-unique solution for the segregation coefficient, e.g., for example for Mg between 2–3. Based on our data we predict that bulk diffusion of impurities in a mono-phase polycrystalline aggregate of YAG is effectively always dominated by grain boundary diffusion.


2020 ◽  
Vol 321 ◽  
pp. 03016
Author(s):  
Masashi Hayakawa ◽  
Hideki Fujii ◽  
Matsuhide Horikawa ◽  
Yosuke Inoue ◽  
Masahiro Morita

To narrow down the candidates of the alloying element powders for Ti-5Al-1Fe products manufactured with BE/PM, two master alloy powders, atomized spherical 5Al-1Fe and crushed-andground polyhedron 5Al-1Fe-4Ti ternary powders, were investigated with emphasizing on homogeneity of alloying elements, Al and Fe, in sintered Ti-5Al-1Fe. Intense Al segregation is recognized in the sintered specimen manufactured using 5Al-1Fe atomized powders, while strong segregation is not observed in the specimen manufactured using 5Al-1Fe-4Ti crushed-and-ground powders. Density of sintered specimen manufactured using 5Al-1Fe atomized powders is lower than that manufactured using 5Al-1Fe-4Ti crushed-and-ground powders. Al segregation and lower sintered density are probably caused by lower density of the powder substance, high flowability of spherical powders and phase constitutions some of which have low melting points. Those factors have to be taken into account to manufacture sintered titanium alloys with high homogeneity by BE/PM.


2019 ◽  
Vol 25 (2) ◽  
pp. 489-500 ◽  
Author(s):  
Deodatta Shinde ◽  
Stefan Fritze ◽  
Mattias Thuvander ◽  
Paulius Malinovskis ◽  
Lars Riekehr ◽  
...  

AbstractThe microstructure and distribution of the elements have been studied in thin films of a near-equimolar CrNbTaTiW high entropy alloy (HEA) and films with 8 at.% carbon added to the alloy. The films were deposited by magnetron sputtering at 300°C. X-ray diffraction shows that the near-equimolar metallic film crystallizes in a single-phase body centered cubic (bcc) structure with a strong (110) texture. However, more detailed analyses with transmission electron microscopy (TEM) and atom probe tomography (APT) show a strong segregation of Ti to the grain boundaries forming a very thin Ti–Cr rich interfacial layer. The effect can be explained by the large negative formation enthalpy of Ti–Cr compounds and shows that CrNbTaTiW is not a true HEA at lower temperatures. The addition of 8 at.% carbon leads to the formation of an amorphous structure, which can be explained by the limited solubility of carbon in bcc alloys. TEM energy-dispersive X-ray spectroscopy indicated that all metallic elements are randomly distributed in the film. The APT investigation, however, revealed that carbide-like clusters are present in the amorphous film.


Sign in / Sign up

Export Citation Format

Share Document