On the stability of a heterogeneous shear layer subject to a body force

1961 ◽  
Vol 11 (2) ◽  
pp. 284-290 ◽  
Author(s):  
J. Menkes

The effects of density variation and body force on the stability of a heterogeneous horizontal shear layer are investigated. The density is assumed to decrease exponentially with height, and the body force is assumed to be derivable from a potential; the velocity distribution in the shear layer is taken to be U(y) = tanh y. The method of small disturbances is employed to obtain a family of neutral stability curves depending on the choice of the Richardson number. It is demonstrated, furthermore, that the value of the critical Richardson number depends on the magnitude of the non-dimensional density gradient.

1959 ◽  
Vol 6 (4) ◽  
pp. 518-522 ◽  
Author(s):  
J. Menkes

The effects of density variation in the absence of gravity on the stability of a horizontal shear layer between two streams of uniform velocities is investigated. The density is assumed to decrease exponentially with height and the velocity is represented by U(y) = tanh y.The method of small disturbances is employed to obtain the neutral stability curve. It is demonstrated that disturbances with wave-numbers larger than the width of the transition layer are attenuated.Qualitative agreement with experimental evidence is obtained.


1974 ◽  
Vol 64 (1) ◽  
pp. 65-83 ◽  
Author(s):  
Joseph J. Dudis

A linear stability analysis is applied to a stably stratified, thermally radiating shear layer. The grey Milne–Eddington approximation is employed as a radiation model. In contrast to a previously reported optically thin analysis, no inviscid instability exists, in the limit of vanishing horizontal wavenumber, for this selfabsorbing model. The inviscid neutral-stability boundary (Richardson number us. dimensionless wavenumber) for the Milne–Eddington approximation converges to the optically thick limit as the optical depth of the shear layer is increased. As the optical depth of the shear layer is decreased, the inviscid Milne–Eddington neutral-stability boundary approaches the optically thin limit, although not uniformly in the wavenumber. For fixed mean velocity gradient and fluid properties, the inviscid critical Richardson number approaches infinity as the optical depth of the shear layer approaches zero. Viscous effects neutralize this radiative destabilization, and the critical Richardson number eventually returns to zero as the optical depth continues to decrease. A shearlayer thickness exists for which the viscous critical Richardson number is a maximum. For shear depths greater than this thickness, self-absorption effects increase the stability; and for shear depths less than this thickness, viscous effects increase the stability. Results of the analysis are applied to the atmospheres of Venus and the earth. A critical Richardson number somewhat above the non-radiating value of 3 (although below the previously reported optically thin value) is found for the lower troposphere of the earth. No substantial effect is found for the earth's lower stratosphere or for the 100 km level above Venus.


1972 ◽  
Vol 52 (3) ◽  
pp. 499-528 ◽  
Author(s):  
R. S. Scotti ◽  
G. M. Corcos

A statically stable stratified free shear layer was formed within the test section of a wind tunnel by merging two uniform streams of air after uniformly heating the top stream. The two streams were accelerated side by side in a contraction section. The resulting sheared thermocline thickened gradually as a result of molecular diffusion and was characterized by nearly self-similar temperature (odd), velocity (odd) and Richardson number (even) profiles. The minimum Richardson numberJ0could be adjusted over the range 0·07 ≥J0≥ 0·76; the Reynolds number Re varied between 30 and 70. Small periodic disturbances were introduced upstream of the test section by a fine wire oscillating in the thermocline. The wire generated a narrow horizontal beam of internal waves, which propagated downstream and remained confined within the thermocline. The growth or decay of these waves was observed in the test section. The results confirm the existence of a critical Richardson number the value of which is in plausible agreement with theoretical predictions (J0≅ 0·22 for the Reynolds number of the experiment). The growth rate is a function of the wavenumber and is somewhat different from that computed for the same Reynolds and Richardson numbers, but the calculation assumed velocity and density profiles which were also somewhat different.


1971 ◽  
Vol 47 (1) ◽  
pp. 1-20 ◽  
Author(s):  
K. S. Gage

A unified linear viscous stability theory is developed for a certain class of stratified parallel channel and boundary-layer flows with Prandtl number equal to unity. Results are presented for plane Poiseuille flow and the asymptotic suction boundary-layer profile, which show that the asymptotic behaviour of both branches of the curve of neutral stability has a universal character. For velocity profiles without inflexion points it is found that a mode of instability disappears as η, the local Richardson number evaluated at the critical point, approaches 0.0554 from below. Calculations for Grohne's inflexion-point profile show both major and minor curves of neutral stability for 0 < η [les ] 0.0554; for\[ 0.0554 < \eta < 0.0773 \]there is only a single curve of neutral stability; and, for η > 0.0773, the curves of neutral stability become closed, with complete stabilization being achieved for a value of η of about 0·107.


The stability of plane Couette flow with a heated lower plate is considered with respect to a two-dimensional infinitesimal disturbance. The eigenvalues are found with the aid of a digital computer as the latent roots of a matrix. Neutral stability curves for various Prandtl numbers at Reynolds numbers up to 150 are obtained by a second method. It is found that the principle of the exchange of stabilities does not hold for this problem. With the aid of Squire’s transformation the conclusion is drawn that all fluids will become unstable at the same value of the Rayleigh number irrespective of whether shear is present or not.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sayed Mahdi Naghavi ◽  
Ghanbar Ali Sheikhzadeh

Purpose The purpose of this study is the identification of the best method to apply the body force in the lattice Boltzmann method (LBM). In the simulation of mixed convection, especially for large Richardson number flows in a square cavity. Design/methodology/approach First, three methods for applying the body force were compared to each other in the LBM. Then, an LBM-based code was written in the FORTRAN language using these three methods. Next, that code was used to simulate natural/mixed convection in a two-dimensional cavity to evaluate the methods for applying the body force. Finally, the optimum way for applying the body force was used for the simulation of free convection heat transfer in a concentric annulus with Rayleigh number in a range of 1,000 to 50,000, and mixed convection heat transfer in a concentric annulus with Rayleigh number in a range of 10,000 to 50,000 and Reynolds number in a range of 100 to 400. Findings Mixed convection heat transfer was simulated in a two-dimensional cavity with Richardson number in a range of 0.0001 to 100. The results which were obtained in low Richardson number flows have shown good adaptation to the available data. However, the results of large Richardson number flows, for example, Ri = 100, have shown a significant difference to the available data. Investigations revealed that this difference was due to the method of applying the body force. Therefore, the choice of the best way to apply the body force was investigated. Finally, for the large Richardson number flows, the best method to apply the body force has been identified among the several techniques. Originality/value To the authors’ knowledge, the effects of methods for applying the body force were not investigated in the cavities mixed convection, even though there are numerous investigations conducted on mixed convection with the LBM. In this study, the effects of techniques to apply the body force were investigated in large Richardson number flows. Finally, the best method to apply the body force is distinguished between several techniques for the large Richardson number mixed convection flows.


1973 ◽  
Vol 59 (3) ◽  
pp. 571-591 ◽  
Author(s):  
Chi-Hai Ling ◽  
W. C. Reynolds

The proper corrections for non-parallel flow to the eigenvalues for small disturbances on a nearly parallel shear flow have been determined through a perturbation about the parallel flow solutions. The resulting shifts in the neutral stability curves have been calculated for the Blasius boundary layer, for the two-dimensional jet, and for the two-dimensional flat-plate wake.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
S. B. Naveen ◽  
B. M. Shankar ◽  
I. S. Shivakumara

Abstract The simultaneous effect of a time-dependent velocity term in the momentum equation and a maximum density property on the stability of natural convection in a vertical layer of Darcy porous medium is investigated. The density is assumed to vary quadratically with temperature and as a result, the basic velocity distribution becomes asymmetric. The problem has been analyzed separately with (case 1) and without (case 2) time-dependent velocity term. It is established that Gill's proof of linear stability effective for case 2 but found to be ineffective for case 1. Due to the lack of Gill's proof for case1, the stability eigenvalue problem is solved numerically and observed that the instability sets in always via traveling-wave mode when the Darcy–Prandtl number is not larger than 7.08. The neutral stability curves and isolines are presented for different governing parameters. The critical values of Darcy–Rayleigh number corresponding to quadratic density variation with respect to temperature, critical wave number, and the critical wave speed are computed for different values of governing parameters. It is found that the system becomes more stable with increasing Darcy–Rayleigh number corresponding to linear density variation with respect to temperature and the Darcy–Prandtl number.


1975 ◽  
Vol 71 (3) ◽  
pp. 563-575 ◽  
Author(s):  
Yu-Hwa Wang

A stably stratified free shear layer is created in a continuously circulating water channel in the laboratory. Two streams of salt water of different concentrations are brought together at the entrance to the open channel and a layered uniform flow field with a distinct sharp interface is produced in the test section. The maximum density difference between the two layers is Δρx = 0·0065ρw, where ρw is the density of water. The velocity of each layer can be adjusted at will to create free shear across the interface. At the end of the open channel, a mechanical device to separate the layers for recirculation is provided. The resulting flow field has a viscous region approximately 15 times larger than the scale of the salinity diffusion layer. Visual observations are made with hydrogen bubbles and dye traces. Interfacial waves are initiated by artificial excitation. The perturbation frequencies range from 0·476 to 10·40Hz. The measured wavelengths range from 0·46 to 3·02 cm. Damped waves as well as growing waves are observed at various exciting frequencies. Velocity profiles and instantaneous velocities are measured by a hot-film anemometer designed for use in salt water. Experimental values of the Richardson number, the dominant parameter characterizing the instability process, range from 1·23 to 14·45. The stability boundary is determined experimentally. Comparisons with Hazel's numerical results and the earlier results of Scotti & Corcos for low values of the Richardson number are also made.


Author(s):  
Natalia Prodiana Setiawati ◽  
Joko Santoso ◽  
Sri Purwaningsih

The utilization of local food commodities such as corn and cassava with seaweed addition as a dietary fiber source for producing artificial rice through extrusion technology is an  alternative for food diversification. The research was carried out to find out the best composition (rice, corn, cassava, and seaweed) and temperature of extrusion process on making artificial rice and the influence of dietary fibre on sensory properties and physicochemical. The composition of rice, corn, and cassava in proportion  of 1:3:1 with 20% seaweed, Eucheuma cottonii, addition and temperature extruder of 90 °C were selected as the best product for artificial rice. The  sensory evaluation was 8.02±0.21 (people’s preference). In physicochemical properties, dietary fiber significantly affected on low bulk density and starch digestibility. This condition is very good for health especially in maintaining the stability of blood glucose in the body. Keywords: artificial rice, composition, extrusion, seaweed, dietary fibre, temperature


Sign in / Sign up

Export Citation Format

Share Document