Low Reynolds numbers flow past an ellipsoid of revolution of large aspect ratio

1965 ◽  
Vol 23 (4) ◽  
pp. 657-671 ◽  
Author(s):  
Yun-Yuan Shi

The results of Proudman & Pearson (1957) and Kaplun & Lagerstrom (1957) for a sphere and a cylinder are generalized to study an ellipsoid of revolution of large aspect ratio with its axis of revolution perpendicular to the uniform flow at infinity. The limiting case, where the Reynolds number based on the minor axis of the ellipsoid is small while the other Reynolds number based on the major axis is fixed, is studied. The following points are deduced: (1) although the body is three-dimensional the expansion is in inverse power of the logarithm of the Reynolds number as the case of a two-dimensional circular cylinder; (2) the existence of the ends and the variation of the diameter along the axis of revolution have no effect on the drag to the first order; (3) a formula for drag is obtained to higher order.

Author(s):  
Václav Cyrus

A straight compressor cascade of aspect ratio 2 was tested in a low speed tunnel within Reynolds number Re1 = 45 000 – 150 000 and inlet flow angle α1 = 35° – 48°. The profile of the blade was NACA 65-12-10. The purpose of the paper was to obtain data on three–dimensional flow in a straight cascade at low Reynolds numbers. Some experimental results on secondary flow have been made into simple correlation relations.


2012 ◽  
Vol 707 ◽  
pp. 37-52 ◽  
Author(s):  
J. Sznitman ◽  
L. Guglielmini ◽  
D. Clifton ◽  
D. Scobee ◽  
H. A. Stone ◽  
...  

AbstractWe investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers ($\mathit{Re}\ll 1$) around a sharp $9{0}^{\ensuremath{\circ} } $ corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (${u}_{z} $). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number.


Author(s):  
Sandra K. S. Boetcher ◽  
Ephraim M. Sparrow

The possible impact of the presence of the strut portion of a Pitot tube on the efficacy of the tube as a velocity-measuring device has been evaluated by numerical simulation. At sufficiently low Reynolds numbers, there is a possibility that the precursive effects of the strut could alter the flow field adjacent to the static taps on the body of the Pitot tube and might even affect the impact pressure measured at the nose. The simulations were performed in dimensionless form with the Reynolds number being the only prescribed parameter, but the dimensions were taken from a short-shanked Pitot tube. Over the Reynolds number range from 1500 to 4000, a slight effect of the strut was identified. However, the variation due to the presence of the shank of the velocity measured by the Pitot tube operating in that range of Reynolds numbers was only 1.5%.


Author(s):  
Junemo Koo ◽  
Clement Kleinstreuer

Experimental observations of liquid microchannel flow are reviewed and results of computer experiments concerning channel entrance, wall slip, non-Newtonian fluid, surface roughness, viscous dissipation and flow instability effects on the friction factor are discussed Specifically, based on numerical friction factor analyses, the entrance effect should be taken into account for any microfluidic system. It is a function of channel length, aspect ratio and the Reynolds number. Non-Newtonian fluid flow effects are expected to be important for polymeric liquids and dense particle suspension flows. The wall-slip effect is negligible for liquid flows. For relatively low Reynolds numbers, i.e., Re > 1,200, onset to instabilities may have to be considered because of possible geometric non-uniformities, including a contraction and/or bend at the microchannel inlet as well as substantial surface roughness. Significant roughness effects, described with a new porous medium layer (PML) model, are a function of the Darcy number, the Reynolds number and cross-sectional configurations. This model was applied to micro-scale liquid flows in straight channels, tubes and rotating cylinders, and validated with experimental data sets. In contrast to published models, PML model simulations yield both an increase and decrease of the friction factor depending on the Darcy number. Viscous dissipation in microchannels is a strong function of the channel aspect ratio, Reynolds number, Eckert number, Prandtl number, and conduit hydraulic diameter. Specifically, viscous dissipation effects are quite important for fluids with low specific heat capacities and high viscosities, even for very low Reynolds numbers, i.e., ReD < 1. The viscous dissipation effect was found to decrease as the fluid temperature increases. As the aspect ratio deviates from unity, the viscous dissipation effect increases. It was found that ignoring the viscous dissipation effect could ultimately affect friction factor measurements for flows in micro-conduits. This could imply a significant amount of viscous heat generation and, for example, may diminish a projected micro-heat-exchanger performance.


2016 ◽  
Vol 28 (3) ◽  
pp. 273-285
Author(s):  
Katsuya Hirata ◽  
◽  
Ryo Nozawa ◽  
Shogo Kondo ◽  
Kazuki Onishi ◽  
...  

[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.


1979 ◽  
Vol 92 (4) ◽  
pp. 643-657 ◽  
Author(s):  
Taeyoung Han ◽  
V. C. Patel

Surface streamline patterns on a spheroid have been examined at several angles of attack. Most of the tests were performed at low Reynolds numbers in a hydraulic flume using coloured dye to make the surface flow visible. A limited number of experiments was also carried out in a wind tunnel, using wool tufts, to study the influence of Reynolds number and turbulent separation. The study has verified some of the important qualitative features of three-dimensional separation criteria proposed earlier by Maskell, Wang and others. The observed locations of laminar separation lines on a spheroid at various incidences have been compared with the numerical solutions of Wang and show qualitative agreement. The quantitative differences are attributed largely to the significant viscous-inviscid flow interaction which is present, especially at large incidences.


1995 ◽  
Vol 283 ◽  
pp. 1-16 ◽  
Author(s):  
J. Feng Feng ◽  
D. D. Joseph ◽  
R. Glowinski ◽  
T. W. Pan

The orientation of an ellipsoid falling in a viscoelastic fluid is studied by methods of perturbation theory. For small fall velocity, the fluid's rheology is described by a second-order fluid model. The solution of the problem can be expressed by a dual expansion in two small parameters: the Reynolds number representing the inertial effect and the Weissenberg number representing the effect of the non-Newtonian stress. Then the original problem is split into three canonical problems: the zeroth-order Stokes problem for a translating ellipsoid and two first-order problems, one for inertia and one for second-order rheology. A Stokes operator is inverted in each of the three cases. The problems are solved numerically on a three-dimensional domain by a finite element method with fictitious domains, and the force and torque on the body are evaluated. The results show that the signs of the perturbation pressure and velocity around the particle for inertia are reversed by viscoelasticity. The torques are also of opposite sign: inertia turns the major axis of the ellipsoid perpendicular to the fall direction; normal stresses turn the major axis parallel to the fall. The competition of these two effects gives rise to an equilibrium tilt angle between 0° and 90° which the settling ellipsoid would eventually assume. The equilibrium tilt angle is a function of the elasticity number, which is the ratio of the Weissenberg number and the Reynolds number. Since this ratio is independent of the fall velocity, the perturbation results do not explain the sudden turning of a long body which occurs when a critical fall velocity is exceeded. This is not surprising because the theory is valid only for slow sedimentation. However, the results do seem to agree qualitatively with ‘shape tilting’ observed at low fall velocities.


Author(s):  
Robert G. Adams

The tangential-flow turbine, which was developed from the drag turbine in an effort to take advantage of the circulatory flow in the drag-turbine passages, frequently has been proposed for use in power systems characterized by low specific speeds. Since such systems often operate with low exhaust pressures which lead to low Reynolds numbers in turbine passages, it is of interest to determine the effect of Reynolds number on the performance of this type of machine. Theoretical determination of the effect is made difficult by the complex three-dimensional nature of the flow in this type of turbine. This paper describes a program of tests which was run on a tangential-flow turbine to investigate the effect of Reynolds number, and presents a simplified theoretical approach to the Reynolds-number effect which is shown to give a reasonable prediction of the trend of the effect.


2009 ◽  
Vol 623 ◽  
pp. 187-207 ◽  
Author(s):  
KUNIHIKO TAIRA ◽  
TIM COLONIUS

Three-dimensional flows over impulsively translated low-aspect-ratio flat plates are investigated for Reynolds numbers of 300 and 500, with a focus on the unsteady vortex dynamics at post-stall angles of attack. Numerical simulations, validated by an oil tow-tank experiment, are performed to study the influence of aspect ratio, angle of attack and planform geometry on the wake vortices and the resulting forces on the plate. Immediately following the impulsive start, the separated flows create wake vortices that share the same topology for all aspect ratios. At large time, the tip vortices significantly influence the vortex dynamics and the corresponding forces on the wings. Depending on the aspect ratio, angle of attack and Reynolds number, the flow at large time reaches a stable steady state, a periodic cycle or aperiodic shedding. For cases of high angles of attack, an asymmetric wake develops in the spanwise direction at large time. The present results are compared to higher Reynolds number flows. Some non-rectangular planforms are also considered to examine the difference in the wakes and forces. After the impulsive start, the time at which maximum lift occurs is fairly constant for a wide range of flow conditions during the initial transient. Due to the influence of the tip vortices, the three-dimensional dynamics of the wake vortices are found to be quite different from the two-dimensional von Kármán vortex street in terms of stability and shedding frequency.


1993 ◽  
Vol 115 (3) ◽  
pp. 513-519 ◽  
Author(s):  
R. G. Dominy ◽  
H. P. Hodson

The effects of Reynolds number, Mach number, and turbulence on the calibrations of commonly used types of five-hole probe are discussed. The majority of the probes were calibrated at the exit from a transonic nozzle over a range of Reynolds numbers (7 × 103 < Re < 80 × 103 based on probe tip diameter) at subsonic and transonic Mach numbers. Additional information relating to the flow structure were obtained from a large-scale, low-speed wind tunnel. The results confirmed the existence of two distinct Reynolds number effects. Flow separation around the probe head affects the calibrations at relatively low Reynolds numbers while changes in the detailed structure of the flow around the sensing holes affects the calibrations even when the probe is nulled. Compressibility is shown to have little influence upon the general behavior of these probes in terms of Reynolds number sensitivity but turbulence can affect the reliability of probe calibrations at typical test Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document