Shear layers in a rotating fluid

1967 ◽  
Vol 29 (1) ◽  
pp. 165-175 ◽  
Author(s):  
D. James Baker

A homogeneous fluid of viscosityvis confined between two co-axial disks (vertical separationH) which rotate relative to a rotating system (angular velocity Ω). The resulting velocity field is studied for values of the parameterv/2ΩH2in the range 1·6 × 10−2to 1·8 × 10−3. The Rossby number, defined as the ratio of the relative angular velocity of the disks to the angular velocity of the system, ranged from 0·038 to 0·0041. The dependence of the resulting velocity field (interior and boundary-layer flow) on geometrical parameters, imposed surface and bottom velocities, and Ω, is in good agreement with the calculations of Stewartson and Carrier. In particular, when the two disks rotate with the same angular velocity, the width of the vertical shear layer at the edge of the disks is found to be proportional to Ω−0·25±0·02. When the disks rotate in opposite senses, a shear layer in the vertical velocity is observed which transports fluid from one disk to the other and whose width is proportional to Ω−0·40±0·10. The magnitude and shape of the observed vertical velocity is in fair agreement with a numerical integration of the theoretical results.

Author(s):  
Dhanalakshmi Challa ◽  
Joe Klewicki

Experiments are conducted to explore the structural mechanisms involved in the post-separation evolution of a wall-bounded to a free-shear turbulent flow. At the upstream, both the boundary layers are turbulent. Experiments were conducted in a two-stream shear-layer tunnel, under a zero axial pressure gradient shear-wake configuration. A velocity ratio near 2 was explored. Profile data were collected with a single wire probe at various locations downstream of the blunt separation lip. With this set of measurements, mean profile, axial intensity and measures of profile evolution indicate that the predominant shift from turbulent boundary layer to free shear-layer like behavior occurs between the downstream locations x/θ = 13.7 & 27.4, where θ is the upstream momentum deficit thickness on the low-speed stream. The shear wake width is observed to be nominally constant with the downstream position. Axial velocity spectra show that the transition from boundary layer flow to shear flow occurs earlier in high-speed stream when compared to low speed stream. Strouhal number, Sto, of initial vortex rollup based on initial momentum thickness was found to be 0.034, which is in very good agreement with the existing literature. Other measures are in good agreement with linear stability considerations found in the literature.


Author(s):  
S Alexandrov ◽  
G-Y Tzou ◽  
S-Y Hsia

The upper bound technique is adopted to investigate the effect of angular velocity on the load required to compress a circular hollow cylinder between rough parallel plates. The kinematically admissible velocity field accounts for the asymptotic behaviour of the actual velocity field in a vicinity of the friction surface. The theoretical solution is illustrated by numerical examples for different geometrical parameters and friction factors. In particular, the variations in work rate, torsion moment and compression force with the dimensionless angular velocity are shown.


MAUSAM ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 35-46
Author(s):  
J. SHUKLA

The quasi-geostrophic omega equation has been numerically solved to get the vertical velocity distribution in a typical westerly disturbance. The effects of sensible heat and latent heat of condensation are also for a 4-layer model. The computations were performed on HITAC 5020. The numerically obtained vertical velocity field is in good agreement with the observed weather pattern associated with the middle latitude large-scale disturbance, i.e., ascending motion in front of the trough and downward motion in the rear of the trough.


Author(s):  
H. Haghighat ◽  
P. Amjadian

In this paper, plane strain extrusion through arbitrarily curved dies is investigated analytically, numerically, and experimentally. Two kinematically admissible velocity fields based on assuming proportional angles, angular velocity field, and proportional distances from the midline in the deformation zone, sine velocity field, are developed for use in upper bound models. The relative average extrusion pressures for the two velocity fields are compared to each other and also with the velocity field of a reference for extrusion through a curved die. The results demonstrate that the angular velocity field is the best. Then, by using the developed analytical model, optimum die lengths which minimize the extrusion loads are determined for a streamlined die and also for a wedge shaped die. The corresponding results for those two die shapes are also determined by using the finite element code and by doing some experiments and are compared with upper bound results. These comparisons show a good agreement.


2015 ◽  
Vol 11 (1) ◽  
pp. 2960-2971
Author(s):  
M.Abdel Wahab

The Numerical study of the flow of a fluid in the annular region between two eccentric sphere susing PHP Code isinvestigated. This flow is created by considering the inner sphere to rotate with angular velocity 1  and the outer sphererotate with angular velocity 2  about the axis passing through their centers, the z-axis, using the three dimensionalBispherical coordinates (, ,) .The velocity field of fluid is determined by solving equation of motion using PHP Codeat different cases of angular velocities of inner and outer sphere. Also Finite difference code is used to calculate surfacetractions at outer sphere.


1988 ◽  
Author(s):  
JAYANT SABNIS ◽  
SANG-KEUN CHOI ◽  
RICHARD BUGGELN ◽  
HOWARD GIBELING

2002 ◽  
Vol 457 ◽  
pp. 377-409 ◽  
Author(s):  
L. SRINIVASA MOHAN ◽  
K. KESAVA RAO ◽  
PRABHU R. NOTT

A rigid-plastic Cosserat model for slow frictional flow of granular materials, proposed by us in an earlier paper, has been used to analyse plane and cylindrical Couette flow. In this model, the hydrodynamic fields of a classical continuum are supplemented by the couple stress and the intrinsic angular velocity fields. The balance of angular momentum, which is satisfied implicitly in a classical continuum, must be enforced in a Cosserat continuum. As a result, the stress tensor could be asymmetric, and the angular velocity of a material point may differ from half the local vorticity. An important consequence of treating the granular medium as a Cosserat continuum is that it incorporates a material length scale in the model, which is absent in frictional models based on a classical continuum. Further, the Cosserat model allows determination of the velocity fields uniquely in viscometric flows, in contrast to classical frictional models. Experiments on viscometric flows of dense, slowly deforming granular materials indicate that shear is confined to a narrow region, usually a few grain diameters thick, while the remaining material is largely undeformed. This feature is captured by the present model, and the velocity profile predicted for cylindrical Couette flow is in good agreement with reported data. When the walls of the Couette cell are smoother than the granular material, the model predicts that the shear layer thickness is independent of the Couette gap H when the latter is large compared to the grain diameter dp. When the walls are of the same roughness as the granular material, the model predicts that the shear layer thickness varies as (H/dp)1/3 (in the limit H/dp [Gt ] 1) for plane shear under gravity and cylindrical Couette flow.


Sign in / Sign up

Export Citation Format

Share Document