Blunt Trailing Edge Shear Wake Development With Turbulent In-Flow Boundary Layers

Author(s):  
Dhanalakshmi Challa ◽  
Joe Klewicki

Experiments are conducted to explore the structural mechanisms involved in the post-separation evolution of a wall-bounded to a free-shear turbulent flow. At the upstream, both the boundary layers are turbulent. Experiments were conducted in a two-stream shear-layer tunnel, under a zero axial pressure gradient shear-wake configuration. A velocity ratio near 2 was explored. Profile data were collected with a single wire probe at various locations downstream of the blunt separation lip. With this set of measurements, mean profile, axial intensity and measures of profile evolution indicate that the predominant shift from turbulent boundary layer to free shear-layer like behavior occurs between the downstream locations x/θ = 13.7 & 27.4, where θ is the upstream momentum deficit thickness on the low-speed stream. The shear wake width is observed to be nominally constant with the downstream position. Axial velocity spectra show that the transition from boundary layer flow to shear flow occurs earlier in high-speed stream when compared to low speed stream. Strouhal number, Sto, of initial vortex rollup based on initial momentum thickness was found to be 0.034, which is in very good agreement with the existing literature. Other measures are in good agreement with linear stability considerations found in the literature.

2014 ◽  
Vol 741 ◽  
pp. 280-315 ◽  
Author(s):  
M. J. P. Hack ◽  
T. A. Zaki

AbstractThe secondary instability of boundary layer streaks is investigated by means of direct stability analysis. The base flow is computed in direct simulations of bypass transition. The random nature of the free-stream perturbations causes the formation of a spectrum of streaks inside the boundary layer, with breakdown to turbulence initiated by the amplification of localized instabilities of individual streaks. The capability of the instability analysis to predict the instabilities which are observed in the direct numerical simulation is established. Furthermore, the analysis is shown to identify the particular streaks that break down to turbulence farther downstream. Two particular configurations of streaks regularly induce the growth of these localized instabilities: low-speed streaks that are lifted towards the edge of the boundary layer, and the local overlap between high-speed and low-speed streaks inside the boundary layer. It is established that the underlying modes can be ascribed to the general classification of inner and outer modes which was introduced by Vaughan & Zaki (J. Fluid Mech., vol. 681, 2011, pp. 116–153). Statistical evaluations show that Blasius boundary layers favour the amplification of outer instabilities. Adverse pressure gradient promotes breakdown to turbulence via the inner mode.


2015 ◽  
Vol 768 ◽  
pp. 141-174 ◽  
Author(s):  
P. A. Brandner ◽  
B. W. Pearce ◽  
K. L. de Graaf

Cavitation occurrence about a jet in crossflow is investigated experimentally in a variable-pressure water tunnel using still and high-speed photography. The 0.012 m diameter jet is injected on the centreplane of a 0.6 m square test section at jet to freestream velocity ratios ranging from 0.2 to 1.6, corresponding to jet-velocity-based Reynolds numbers of $25\times 10^{3}$ to $160\times 10^{3}$ respectively. Measurements were made at a fixed freestream-based Reynolds number, for which the ratio of the undisturbed boundary layer thickness to jet diameter is 1.18. The cavitation number was varied from inception (up to about 10) down to 0.1. Inception is investigated acoustically for bounding cases of high and low susceptibility to phase change. The influence of velocity ratio and cavitation number on cavity topology and geometry are quantified from the photography. High-speed photographic recordings made at 6 kHz provide insight into cavity dynamics, and derived time series of spatially averaged pixel intensities enable frequency analysis of coherent phenomena. Cavitation inception was found to occur in the high-shear regions either side of the exiting jet and to be of an intermittent nature, increasing in occurrence and duration from 0 to 100 % probability with decreasing cavitation number or increasing jet to freestream velocity ratio. The frequency and duration of individual events strongly depends on the cavitation nuclei supply within the approaching boundary layer. Macroscopic cavitation develops downstream of the jet with reduction of the cavitation number beyond inception, the length of which has a power-law dependence on the cavitation number and a linear dependence on the jet to freestream velocity ratio. The cavity closure develops a re-entrant jet with increase in length forming a standing wave within the cavity. For sufficiently low cavitation numbers the projection of the re-entrant jet fluid no longer reaches the cavity leading edge, analogous to supercavitation forming about solid cavitators. Hairpin-shaped vortices are coherently shed from the cavity closure via mechanisms of shear-layer roll-up similar to those shed from protuberances and jets in crossflow in single-phase flows. These vortices are shed at an apparently constant frequency, independent of the jet to freestream velocity ratio but decreasing in frequency with reducing cavitation number and cavity volume growth. Highly coherent cavitating vortices form along the leading part of the cavity due to instability of the jet upstream shear layer for jet to freestream velocity ratios greater than about 0.8. These vortices are cancelled and condense as they approach the trailing edge in the shear layer of opposing vorticity associated with the cavity closure and the hairpin vortex formation. For lower velocity ratios, where there is decreased jet penetration, the jet upstream shear velocity gradient reverses and vortices of the opposite sense form, randomly modulated by boundary layer turbulence.


1964 ◽  
Vol 20 (3) ◽  
pp. 383-399 ◽  
Author(s):  
E. H. Wedemeyer

A theoretical analysis is given of the unsteady flow of a liquid within a cylinder of finite length started suddenly so as to spin about its axis. It is found that a secondary flow, caused by the end walls of the cylindrical container, has a strong effect on the generation of spin in the liquid. In the vicinity of the end walls the fluid motion is characterized by a boundary-layer flow, which can be either laminar or turbulent. The fluid within the boundary layers rotates faster than that at a large distance from the end walls, and therefore is thrown, by centrifugal forces, radially outwards. The radial outflow in the boundary layer creates a slow secondary motion within the spinning liquid. Due to the secondary flow, the transport of angular momentum from the walls to the interior is accomplished by convection rather than diffusion. A treatment is given for both laminar and turbulent end-wall boundary layers. The theoretical results are compared with experimental observations and good agreement is found.


Author(s):  
Rozie Zangeneh

Abstract The boundary-layer separation and subsequent reattachment due to the free shear-layer and Shockwave interaction have a significant impact on the aerothermal design of supersonic aerospace systems. This problem is prevalent in high-speed flights and can significantly affect the skin friction, aerodynamic loads, and heat transfer. In recent years, considerable progress has been achieved in the prediction of turbulent compressible flows using high-fidelity models. However, the prediction of reattaching free shear-layer and shockwave interactions still needs to be modified for accurate predictivity. The objective of this study is to investigate the ability of a new computational fluid dynamics model to predict these critical flow phenomena accurately. The new high-fidelity model is based on a collocated central scheme, which has the advantage of being a Riemann free solver, and therefore easy to implement on unstructured grids. It is developed to capture any discontinuities at shocks while it is able to capture broadband spatial and temporal variations in turbulent flows with minimal dissipation and dispersion. Large Eddy Simulation is performed on a compression corner at a Mach number of 2.92 and a high Reynolds number. The geometry of the model is specifically designed to isolate the reattachment process of a high-speed separated flow. To examine the accuracy of the predicted results, results of velocity profiles in the free shear-layer, boundary layer development, turbulent fluctuations, and pressure are compared to an experimental effort by Princeton. Excellent agreement is observed, and it is recommended that the model can be used to investigate the physics of the shock unsteadiness due to interaction with a free shear-layer.


New solutions are presented for non-stationary boundary layers induced by planar, cylindrical and spherical Chapman-Jouguet (C-J) detonation waves. The numerical results show that the Prandtl number ( Pr ) has a very significant influence on the boundary-layer-flow structure. A comparison with available time-dependent heat-transfer measurements in a planar geometry in a 2H 2 + O 2 mixture shows much better agreement with the present analysis than has been obtained previously by others. This lends confidence to the new results on boundary layers induced by cylindrical and spherical detonation waves. Only the spherical-flow analysis is given here in detail for brevity.


2003 ◽  
Vol 474 ◽  
pp. 1-33 ◽  
Author(s):  
PAOLA COSTAMAGNA ◽  
GIOVANNA VITTORI ◽  
PAOLO BLONDEAUX

The dynamics of the vortex structures appearing in an oscillatory boundary layer (Stokes boundary layer), when the flow departs from the laminar regime, is investigated by means of flow visualizations and a quantitative analysis of the velocity and vorticity fields. The data are obtained by means of direct numerical simulations of the Navier–Stokes and continuity equations. The wall is flat but characterized by small imperfections. The analysis is aimed at identifying points in common and differences between wall turbulence in unsteady flows and the well-investigated turbulence structure in the steady case. As in Jimenez & Moin (1991), the goal is to isolate the basic flow unit and to study its morphology and dynamics. Therefore, the computational domain is kept as small as possible.The elementary process which maintains turbulence in oscillatory boundary layers is found to be similar to that of steady flows. Indeed, when turbulence is generated, a sequence of events similar to those observed in steady boundary layers is observed. However, these events do not occur randomly in time but with a repetition time scale which is about half the period of fluid oscillations. At the end of the accelerating phases of the cycle, low-speed streaks appear close to the wall. During the early part of the decelerating phases the strength of the low-speed streaks grows. Then the streaks twist, oscillate and eventually break, originating small-scale vortices. Far from the wall, the analysis of the vorticity field has revealed the existence of a sequence of streamwise vortices of alternating circulation pumping low-speed fluid far from the wall as suggested by Sendstad & Moin (1992) for steady flows. The vortex structures observed far from the wall disappear when too small a computational domain is used, even though turbulence is self-sustaining. The present results suggest that the streak instability mechanism is the dominant mechanism generating and maintaining turbulence; no evidence of the well-known parent vortex structures spawning offspring vortices is found. Although wall imperfections are necessary to trigger transition to turbulence, the characteristics of the coherent vortex structures, for example the spacing of the low-speed streaks, are found to be independent of wall imperfections.


2021 ◽  
Author(s):  
Michael Hopfinger ◽  
Volker Gümmer

Abstract The development of viscous endwall flow is of major importance when considering highly-loaded compressor stages. Essentially, all losses occurring in a subsonic compressor are caused by viscous shear stresses building up boundary layers on individual aerofoils and endwall surfaces. These boundary layers cause significant aerodynamic blockage and cause a reduction in effective flow area, depending on the specifics of the stage design. The presented work describes the numerical investigation of blockage development in a 3.5-stage low-speed compressor with tandem stator vanes. The research is aimed at understanding the mechanism of blockage generation and growth in tandem vane rows and across the entire compressor. Therefore, the blockage generation is investigated as a function of the operating point, the rotational speed and the inlet boundary layer thickness.


2019 ◽  
Vol 865 ◽  
pp. 928-962 ◽  
Author(s):  
Haohua Zong ◽  
Marios Kotsonis

Plasma synthetic jet actuators (PSJAs) are particularly suited for high-Reynolds-number, high-speed flow control due to their unique capability of generating supersonic pulsed jets at high frequency (${>}5$  kHz). Different from conventional synthetic jets driven by oscillating piezoelectric diaphragms, the exit-velocity variation of plasma synthetic jets (PSJs) within one period is significantly asymmetric, with ingestion being relatively weaker (less than $20~\text{m}~\text{s}^{-1}$) and longer than ejection. In this study, high-speed phase-locked particle image velocimetry is employed to investigate the interaction between PSJAs (round exit orifice, diameter 2 mm) and a turbulent boundary layer at constant Strouhal number (0.02) and increasing mean velocity ratio ($r$, defined as the ratio of the time-mean velocity over the ejection phase to the free-stream velocity). Two distinct operational regimes are identified for all the tested cases, separated by a transition velocity ratio, lying between $r=0.7$ and $r=1.0$. At large velocity and stroke ratios (first regime, representative case $r=1.6$), vortex rings are followed by a trailing jet column and tilt downstream initially. This downstream tilting is transformed into upstream tilting after the pinch-off of the trailing jet column. The moment of this transformation relative to the discharge advances with decreasing velocity ratio. Shear-layer vortices (SVs) and a hanging vortex pair (HVP) are identified in the windward and leeward sides of the jet body, respectively. The HVP is initially erect and evolves into an inclined primary counter-rotating vortex pair ($p$-CVP) which branches from the middle of the front vortex ring and extends to the near-wall region. The two legs of the $p$-CVP are bridged by SVs, and a secondary counter-rotating vortex pair ($s$-CVP) is induced underneath these two legs. At low velocity and stroke ratios (second regime, representative case $r=0.7$), the trailing jet column and $p$-CVP are absent. Vortex rings always tilt upstream, and the pitching angle increases monotonically with time. An $s$-CVP in the near-wall region is induced directly by the two longitudinal edges of the ring. Inspection of spanwise planes ($yz$-plane) reveals that boundary-layer energization is realized by the downwash effect of either vortex rings or $p$-CVP. In addition, in the streamwise symmetry plane, the increasing wall shear stress is attributed to the removal of low-energy flow by ingestion. The downwash effect of the $s$-CVP does not benefit boundary-layer energization, as the flow swept to the wall is of low energy.


2019 ◽  
Vol 875 ◽  
pp. 44-70 ◽  
Author(s):  
Karin Blackman ◽  
Laurent Perret ◽  
Romain Mathis

Urban-type rough-wall boundary layers developing over staggered cube arrays with plan area packing density, $\unicode[STIX]{x1D706}_{p}$, of 6.25 %, 25 % or 44.4 % have been studied at two Reynolds numbers within a wind tunnel using hot-wire anemometry (HWA). A fixed HWA probe is used to capture the outer-layer flow while a second moving probe is used to capture the inner-layer flow at 13 wall-normal positions between $1.25h$ and $4h$ where $h$ is the height of the roughness elements. The synchronized two-point HWA measurements are used to extract the near-canopy large-scale signal using spectral linear stochastic estimation and a predictive model is calibrated in each of the six measurement configurations. Analysis of the predictive model coefficients demonstrates that the canopy geometry has a significant influence on both the superposition and amplitude modulation. The universal signal, the signal that exists in the absence of any large-scale influence, is also modified as a result of local canopy geometry suggesting that although the nonlinear interactions within urban-type rough-wall boundary layers can be modelled using the predictive model as proposed by Mathis et al. (J. Fluid Mech., vol. 681, 2011, pp. 537–566), the model must be however calibrated for each type of canopy flow regime. The Reynolds number does not significantly affect any of the model coefficients, at least over the limited range of Reynolds numbers studied here. Finally, the predictive model is validated using a prediction of the near-canopy signal at a higher Reynolds number and a prediction using reference signals measured in different canopy geometries to run the model. Statistics up to the fourth order and spectra are accurately reproduced demonstrating the capability of the predictive model in an urban-type rough-wall boundary layer.


Sign in / Sign up

Export Citation Format

Share Document