Measurements and prediction of fully developed turbulent flow in an equilateral triangular duct

1978 ◽  
Vol 85 (1) ◽  
pp. 57-83 ◽  
Author(s):  
A. M. M. Aly ◽  
A. C. Trupp ◽  
A. D. Gerrard

Fully developed air-flows through an equilateral triangular duct of 12·7 cm sides were investigated over a Reynolds number range of 53 000 to 107 000. Based on equivalent hydraulic diameter, friction factors were found to be about 6% lower than for pipe flow. Mean axial velocity distributions near the wall were describable by the inner law of the wall (when based on local wall shear stress) but the constants differ slightly from those for pipe flow. As expected, the secondary flow pattern was found to consist of six counter-rotating cells bounded by the corner bisectors. Maximum secondary velocities of about 1 ½% of the bulk velocity were observed. The effects of secondary currents were evident in the cross-sectional distributions of mean axial velocity, wall shear stress and Reynolds stresses, and very prominent in the turbulent kinetic energy distribution. For the flow prediction, the vorticity production terms were expressed by modelling the Reynolds stresses in the plane of the cross-section in terms of gradients in the mean axial velocity and a geometrically calculated turbulence length scale. The experimental and predicted characteristics of the flow are shown to be in good agreement.

2016 ◽  
Vol 43 (1) ◽  
pp. 99-115 ◽  
Author(s):  
Khairuzzaman Mamun ◽  
Most. Akhter ◽  
Mohammad Ali

A numerical simulation to investigate the Non-Newtonian modeling effects on physiological flows in a three dimensional idealized artery with a single stenosis of 85% severity is given. The wall vessel is considered to be rigid. Oscillatory physiological and parabolic velocity profile has been imposed for inlet boundary condition. Determination of the physiological waveform is performed using a Fourier series with sixteen harmonics. The investigation has a Reynolds number range of 96 to 800. Low Reynolds number k ? w model is used as governing equation. The investigation has been carried out to characterize two Non-Newtonian constitutive equations of blood, namely, (i) Carreau and (ii) Cross models. The Newtonian model has also been investigated to study the physics of fluid. The results of Newtonian model are compared with the Non-Newtonian models. The numerical results are presented in terms of velocity, pressure, wall shear stress distributions and cross sectional velocities as well as the streamlines contour. At early systole pressure differences between Newtonian and Non-Newtonian models are observed at pre-stenotic, throat and immediately after throat regions. In the case of wall shear stress, some differences between Newtonian and Non-Newtonian models are observed when the flows are minimum such as at early systole or diastole. In general, the velocities at throat regions are highest at all-time phase. However, at pick systole higher velocities are observed at post-stenotic region. Downstream flow of all models creates some recirculation regions at diastole.


2021 ◽  
Vol 932 ◽  
Author(s):  
Julian Brosda ◽  
Michael Manhart

This study describes turbulent flow in a semifilled pipe with a focus on its secondary currents. To the authors’ knowledge, we provide the first highly resolved data-set for semifilled-pipe flow using direct numerical simulation. The flow parameters range from $Re_\tau =115$ , just maintaining turbulence, to moderate turbulent flow at $Re_\tau =460$ . Some of the main flow characteristics are in line with previously published results from experiments, such as the velocity-dip phenomenon, the main secondary flow and the qualitative distribution of the Reynolds stresses in the core of the flow. We observe some flow phenomena which have not yet been reported in the literature so far for this type of flow. Among those is the inner secondary cell in the mixed corner between the free surface and the pipe's wall, which plays a major role in the distribution of the wall shear stress along the perimeter. We observe that the position and extension of the inner vortex scale with the wall shear stress and those of the outer vortex scale with outer variables. For the first time, we present and discuss distributions of the complete Reynolds stress tensor and its anisotropy which gives rise to the generation of mean streamwise vorticity in a small region in the mixed corners of the pipe. Mean secondary kinetic energy, however, is generated at the free surface around the stagnation point between the inner and outer vortices. This generation mechanism is in line with a vortex dynamics mechanism proposed in the literature.


1994 ◽  
Vol 116 (3) ◽  
pp. 645-649 ◽  
Author(s):  
Josef Daniel Ackerman ◽  
Louis Wong ◽  
C. Ross Ethier ◽  
D. Grant Allen ◽  
Jan K. Spelt

We present a Preston tube device that combines both total and static pressure readings for the measurement of wall shear stress. As such, the device facilitates the measurement of wall shear stress under conditions where there is streamline curvature and/or over surfaces on which it is difficult to either manufacture an array of static-pressure taps or to position a single tap. Our “Preston-static” device is easily and conveniently constructed from commercially available regular and side-bored syringe needles. The pressure difference between the total pressure measured in the regular syringe needle and the static pressure measured in the side-bored one is used to determine the wall shear stress. Wall shear stresses measured in pipe flow were consistent with independently determined values and values obtained using a conventional Preston tube. These results indicate that Preston-static tubes provide a reliable and convenient method of measuring wall shear stress.


Author(s):  
Navid Freidoonimehr ◽  
Rey Chin ◽  
Anthony C. Zander ◽  
Maziar Arjomandi

Abstract Temporal variations of the coronary arteries during a cardiac cycle are defined as the superposition of the changes in the position, curvature, and torsion of the coronary artery axis markers and the variations in the lumen cross-sectional shape due to the distensible wall motion induced by the pulse pressure and contraction of the myocardium in a cardiac cycle. This review discusses whether the modelling the temporal variations of the coronary arteries is needed for the investigation of the hemodynamics specifically in time critical applications such as a clinical environment. The numerical modellings in the literature which model or disregard the temporal variations of the coronary arteries on the hemodynamic parameters are discussed. The results in the literature show that neglecting the effects of temporal geometric variations is expected to result in about 5\% deviation of the time-averaged pressure drop and wall shear stress values and also about 20\% deviation of the temporal variations of hemodynamic parameters, such as time-dependent wall shear stress and oscillatory shear index. This review study can be considered as a guide for the future studies to outline the conditions in which temporal variations of the coronary arteries can be neglected, while providing a reliable estimation of hemodynamic parameters.


AIChE Journal ◽  
1996 ◽  
Vol 42 (8) ◽  
pp. 2369-2373 ◽  
Author(s):  
Charles H. Newton ◽  
Masud Behnia

1969 ◽  
Vol 20 (4) ◽  
pp. 355-364 ◽  
Author(s):  
B. R. Pai ◽  
J. H. Whitelaw

SummaryExperiments in a in (6-35 mm) channel have yielded further information on the precision and convenience of the razor blade technique. It is shown that adhesive tape or carefully located cement can be used to secure a segment of razor blade over a static pressure hole: the resulting calibration for shear stress remains valid if the blade is removed and relocated over the same or a different, similar sized hole. Razor blade segments, calibrated in this manner, have been used to measure wall-shear stress in a turbulent boundary layer with tangential, secondary injection: the results indicate that V. C. Patel’s law of the wall is valid for such flows.


1994 ◽  
Vol 38 ◽  
pp. 475-480
Author(s):  
Shoichi KUSHITA ◽  
Hiroshi YASUKAWA ◽  
Masakazu UI

Sign in / Sign up

Export Citation Format

Share Document