scholarly journals The extensional viscosity of a dilute suspension of spherical particles at intermediate microscale Reynolds numbers

1980 ◽  
Vol 99 (3) ◽  
pp. 513-529 ◽  
Author(s):  
G. Ryskin ◽  
G. Ryskin ◽  
J. M. Rallison

The extensional viscosity of a dilute suspension of spherical particles (rigid spheres, viscous drops or gas bubbles) is computed for the case when the Reynolds number of the microscale disturbance motionRis not restricted to be small, as in the classical analysis of Einstein and Taylor. However, the present theory is restricted to steady axisymmetric pure straining flow (uniaxial extension). The rate of energy dissipation is expressed using the Bobyleff-Forsythe formula and then conditionally convergent integrals are removed explicitly. The problem is thereby reduced to a determination of the flow around a particle, subject to pure straining at infinity, followed (for rigid particles) by an evaluation of the volume integral of the vorticity squared. In the case of fluid particles, further integrals over the volume and surface of the particle are required. In the present paper, results are obtained numerically for 1 [les ]R[les ] 1000 for a rigid sphere, for a drop whose viscosity is equal to the viscosity of the ambient fluid, and for an inviscid drop (gas bubble). For the last case, limiting results are also obtained forR→ ∞ using Levich's approach.All of these results show a strain-thickening behaviour which increases with the viscosity of the particle. The possibility of experimental verification of the results, which is complicated by the inapplicability of the approximation of material frame-indifference in this case, is discussed.

1971 ◽  
Vol 46 (4) ◽  
pp. 813-829 ◽  
Author(s):  
G. K. Batchelor

In a pure straining motion, elongated rigid particles in suspension are aligned parallel to the direction of the greatest principal rate of extension, provided the effect of Brownian motion is weak. If the suspension is dilute, in the sense that the particles are hydrodynamically independent, each particle of length 2l makes a contribution to the bulk deviatoric stress which is of roughly the same order of magnitude as that due to a rigid sphere of radius l. The fractional increase in the bulk stress due to the presence of the particles is thus equal to the concentration by volume multiplied by a factor of order l2/b2, where 2b is a measure of the linear dimensions of the particle cross-section. This suggests that the stress due to the particles might be relatively large, for volume fractions which are still small, with interesting implications for the behaviour of polymer solutions. However, dilute-suspension theory is not applicable in these circumstances, and so an investigation is made of the effect of interactions between particles. It is assumed that, when the average lateral spacing of particles (h) satisfies the conditions b [Lt ] h [Lt ] l, the disturbance velocity vector is parallel to the particles and varies only in the cross-sectional plane. The velocity near a particle is found to have the same functional form as for an isolated particle, and the modification to the outer flow field for one particle is determined by replacing the randomly placed neighbouring particles by an equivalent cylindrical boundary. The resulting expression for the contribution to the bulk stress due to the particles differs from that for a dilute suspension only in a minor way, viz. by the replacement of log 2l/b by log h/b, and the above suggestion is confirmed. The relative error in the expression for the stress is expected to be of order (log h/b)−1. Some recent observations by Weinberger of the stress in a suspension of glass-fibre particles for which 2l/h = 7·4 and h/2b = 7·8 do show a particle stress which is much larger than the ambient-fluid stress, although the theoretical formula is not accurate under these conditions.


1972 ◽  
Vol 55 (4) ◽  
pp. 745-765 ◽  
Author(s):  
L. G. Leal ◽  
E. J. Hinch

A set of constitutive equations, valid for arbitrary linear bulk flows, is derived for a dilute suspension of nearly spherical, rigid particles which are subject to rotary Brownian couples. These constitutive equations are subsequently applied to find the resulting stress patterns for a variety of time-dependent bulk flow fields. The rheological responses are found to exhibit many of the same qualitative features as have been observed in recent experimental investigations of polymeric solutions and other complex materials.


1962 ◽  
Vol 14 (1) ◽  
pp. 136-157 ◽  
Author(s):  
G. Segré ◽  
A. Silberberg

It is shown that a rigid sphere transported along in Poiseuille flow through a tube is subject to radial forces which tend to carry it to a certain equilibrium position at about 0.6 tube radii from the axis, irrespective of the radial position at which the sphere first entered the tube. It is further shown that the trajectories of the particles are portions of one master trajectory and that the origin of the forces causing the radial displacements is in the inertia of the moving fluid. An analysis of the parameters determining the behaviour is presented and a phenomenological description valid at low Reynolds numbers is arrived at in terms of appropriate reduced variables. These phenomena have already been described in a preliminary note (Segré & Silberberg 1961). The present more complete analysis confirms the conclusions, but it appears that the dependence of the effects on the particle radius go with the third and not the fourth power as was then reported.It is also shown that the description of the phenomena becomes more complicated at tube Reynolds numbers above about 30.


1991 ◽  
Vol 230 ◽  
pp. 479-504 ◽  
Author(s):  
Xiaoguang Zhang ◽  
Robert H. Davis

A dilute dispersion containing drops of one fluid dispersed in a second, immiscible fluid is considered. The drops are sufficiently small that inertia is negligible and that they remain spherical. Two drops of different size are in relative motion due to either Brownian diffusion or gravitational sedimentation. When the drops become close, they interact with each other owing to hydrodynamic disturbances and van der Waals attractions, and, under favourable conditions, they will collide with each other and coalesce. The rate at which two drops collide is predicted by solving the diffusion equation for Brownian coalescence, and by using a trajectory analysis to follow the relative motion of pairs of drops for gravity-induced coalescence.The emphasis of our analysis is on the effects of drop interactions on their collision rate, and these are described by the collision efficiency. Since the hydrodynamic resistance to the drop relative motion reduces with a decreasing ratio of the viscosities of the drop fluid and the surrounding fluid, the collision efficiency increases with decreasing viscosity ratio. A qualitative difference in the collision behaviour of viscous drops from that of rigid spheres is demonstrated; finite collision rates for drops are predicted even in the absence of attractive forces, provided that drop deformation is negligible, whereas rigid particles with smooth surfaces will not come into contact in a fluid continuum unless an attractive force is present which is able to overcome the lubrication forces resisting the relative motion. Hydrodynamic interactions between two spherical drops are accounted for exactly by determining the two-sphere relative mobility functions from previous solutions for two drops moving along and normal to their line of centres. These solutions are based on the method of reflections for widely separated drops, lubrication theory for drops in near-contact, and bispherical coordinates for general separations. The hydrodynamic interactions have a greater effect on reducing the rate of gravity collisions than the rate of Brownian collisions.


1983 ◽  
Vol 219 (1215) ◽  
pp. 217-217

The movement of variously dense spherical particles representing a variety of seeds, fruits, spores and pollen, and released from rest into arbitrary winds and a gravitational field is discussed in general terms that account in detail for changes in the quasi-static aerodynamic resistance to motion experienced by such particles during aerial flight. A hybrid analytical-empirical law is established which describes this resistance fairly accurately for particle Reynolds numbers in the range 0—60 000 and that allows for the numerical integration of the equations of motion so as to cover a very wide range of flight conditions. This makes possible the provision of a set of four-parameter universal range tables from which the dispersal distances for an enormous number of practical cases may be estimated. One particular case of particle movement in a region of pseudo-thermal convection is also discussed and this shows how a marked degree of deposition concentration may be induced in some circumstances by such a flow. Botanists and ecologists concerned with seed and particle dispersal in the environment may find the universal range tables of particular interest and use. This is because the tables obviate the need for the integration of the equations of motion when dealing with individual cases and permit an estimation of range purely on the basis of the specified quantities of particle size, density and altitude of release, atmospheric wind speed, density and viscosity, and the acceleration due to gravity.


1974 ◽  
Vol 65 (2) ◽  
pp. 365-400 ◽  
Author(s):  
B. P. Ho ◽  
L. G. Leal

The familiar Segré-Silberberg effect of inertia-induced lateral migration of a neutrally buoyant rigid sphere in a Newtonian fluid is studied theoretically for simple shear flow and for two-dimensional Poiseuille flow. It is shown that the spheres reach a stable lateral equilibrium position independent of the initial position of release. For simple shear flow, this position is midway between the walls, whereas for Poiseuille flow, it is 0·6 of the channel half-width from the centre-line. Particle trajectories are calculated in both cases and compared with available experimental data. Implications for the measurement of the rheological properties of a dilute suspension of spheres are discussed.


Sign in / Sign up

Export Citation Format

Share Document