Study of the effects of wall conductance on natural convection in differently oriented square cavities

1984 ◽  
Vol 144 ◽  
pp. 153-176 ◽  
Author(s):  
D. M. Kim ◽  
R. Viskanta

This paper reports experimental and numerical results on the effects of wall conductance on natural convection in a two-dimensional rectangular cavity. Three different configurations in which the external wall is heated from the side, top and bottom and cooled from the side, bottom and top respectively have been investigated. Experiments have been performed in a square enclosure with solid walls made from Lexan and forming a square air-filled cavity. A Mach–Zehnder interferometer was used to determine the temperature distributions in the fluid. Solutions for stationary two-dimensional equations of energy and motion governing heat conduction in the solid and natural convection flow and heat transfer of a Boussinesq fluid contained in the cavity have been obtained numerically. The coupled flow distributions, including the appearance of multicellular flow, temperature profiles and heat-transfer predictions compare favourably with experimental results. Heat conduction in the connecting (unheated) walls is shown to simultaneously stabilize and destabilize the fluid in the cavity.

1988 ◽  
Vol 110 (1) ◽  
pp. 116-125 ◽  
Author(s):  
P. A. Litsek ◽  
A. Bejan

The natural convection flow and heat transfer between two enclosures that communicate through a vertical opening is studied by considering the evolution of an enclosed fluid in which the left half is originally at a different temperature than the right half. Numerical experiments show that at sufficiently high Rayleigh numbers the ensuing flow is oscillatory. This and other features are anticipated on the basis of scale analysis. The time scales of the oscillation, the establishment of thermal stratification, and eventual thermal equilibrium are determined and tested numerically. At sufficiently high Rayleigh numbers the heat transfer between the communicating zones is by convection, in accordance with the constant-Stanton-number trend pointed out by Jones and Otis (1986). The range covered by the numerical experiments is 102 < Ra < 107, 0.71 < Pr < 100, and 0.25 < H/L < 1.


Author(s):  
Mustapha Faraji ◽  
El Mehdi Berra

Abstract This paper reported the mathematical modeling and numerical simulation of natural convection flow of Cu/water nanofluid in a square enclosure using the lattice Boltzmann method (LBM). The cavity is heated from below by heat source and cooled by the top wall. The vertical walls are adiabatic. After validating the numerical code against the numerical and experimental data, simulations were performed for different Rayleigh numbers (104–0.5 × 107), nanoparticles volume fractions (0–8%), and cavity inclination angle (0 deg–90 deg). The effects of the studied parameters on the streamlines, on isotherms distributions within the enclosure, and on the local and average Nusselt numbers are investigated. It was found that heat transfer and fluid flow structure depend closely on the nanoparticle concentration. Results show differences in stream separation between a base fluid and the nanofluid. Also, adding small nanoparticles fractions, less than 6%, to the base fluid enhances the heat transfer for higher Rayleigh numbers and cavity inclination angle less than 30 deg. It is concluded that the optimal dilute suspension of copper nanoparticles can be applied as a passive way to enhance heat transfer in natural convection engineering applications.


1985 ◽  
Vol 107 (1) ◽  
pp. 139-146 ◽  
Author(s):  
D. M. Kim ◽  
R. Viskanta

This paper presents numerical and experimental results for buoyancy-induced flow in a two-dimensional, fluid-filled enclosure. Rectangular cavities formed by finite conductance walls of different void fractions and aspect ratios are considered. Parametric heat transfer calculations have been performed and results are presented and discussed. Local and average Nusselt numbers along the cavity walls are reported for a range of parameters of physical interest. The temperatures in the walls were measured with thermocouples, and the temperature distributions in the air-filled cavity were determined using a Mach-Zehnder interferometer. Good agreement has been obtained between the measured and the predicted temperatures in both the solid wall and in the fluid using the mathematical model. Wall heat conduction reduces the average temperature differences across the cavity, partially stabilizes the flow, and decreases natural convection heat transfer.


1987 ◽  
Vol 109 (2) ◽  
pp. 363-370 ◽  
Author(s):  
C. Beckermann ◽  
S. Ramadhyani ◽  
R. Viskanta

A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman–Forchheimer–extended Darcy equations. The numerical model is verified by conducting a number of experiments, with spherical glass beads as the porous medium and water and glycerin as the fluids, in rectangular test cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra × Da, the flow takes place primarily in the fluid layer, and heat transfer in the porous layer is by conduction only. On other hand, fluid penetrating into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure.


2017 ◽  
Vol 7 (3) ◽  
pp. 1647-1657
Author(s):  
M. M. Keshtkar ◽  
M. Ghazanfari

This paper focuses on solving the fluid flow and heat transfer equations inside a two-dimensional square enclosure containing three hot obstacles affected by gravity and magnetic force placed on a ramp using Boltzmann method (LBM) applying multiple relaxation times (MRT). Although, the Lattice Boltzmann with MRT is a complex technique, it is a relatively new, stable, fast and high-accurate one. The main objective of this research was to numerically model the fluid flow and ultimately obtaining the velocity field, flow and temperature contour lines inside a two-dimensional enclosure. The results and their comparisons for different types of heat transfer revealed that free or forced heat transfer has a considerable impact on the heat transfer and stream lines. This can be controlled by modifying the Richardson number. It is revealed that changing the intensity of the magnetic field (Hartman number) has an appreciable effect on the heat transfer.


2018 ◽  
Vol 10 (1) ◽  
pp. 11-23 ◽  
Author(s):  
A. Akter ◽  
S. Parvin

The laminar natural convection flow and heat transfer inside a trapezoidal cavity filled with air and containing a rectangular block is investigated numerically. The left and right walls of the cavity are cold, the top and bottom walls are adiabatic and the rectangular body is heated uniformly. Finite Element Method of Galerkin’s weighted residual scheme is used to solve the transport equations with appropriate boundary conditions. The main objective of this study is to explore the influence of pertinent parameters such as Rayleigh number, Hartmann number and orientation of the magnetic field on the flow and heat transfer performance of the fluid while the Prandtl number is considered fixed. Results indicate that the heat transfer rate is significantly affected by increasing the mentioned parameters.


Sign in / Sign up

Export Citation Format

Share Document