Hydrodynamic arrest of a flat body moving towards a parallel surface at arbitrary Reynolds number

1988 ◽  
Vol 186 ◽  
pp. 285-301 ◽  
Author(s):  
C. J. Lawrence ◽  
S. Weinbaum

The motion of a flat body towards a parallel plane surface in incompressible fluid is considered both in the presence and absence of an applied force for a non-vanishing initial velocity. In the inviscid limit, a first integral of the equations is obtained and analytic solutions are presented for the cases of finite body inertia with zero applied force and finite applied force with negligible body inertia. In the former case when the ratio of body inertia to fluid inertia is large, a singular behaviour is observed in the arrest of the body before impact wherein the time-dependent pressure and radial velocity of the fluid exhibit a sharp peak and there is a large transfer of kinetic energy from the body to the thin fluid layer. For a real fluid, a general procedure is described to obtain solutions at arbitrary Reynolds number for naturally occurring initial velocity conditions. Solutions to the full Navier-Stokes equations are obtained for an arbitrary Reynolds number based on gap height which are valid provided the flow remains laminar and the gap height is small. In general, the equations of motion of the body and fluid are both dynamically and kinematically coupled. The dynamic coupling, however, is removed when the body inertia is neglected. In particular, the cases of hydrodynamic arrest with zero applied force, and draining of the fluid under a constant applied force are considered. The natural initial conditions lead to a new exact similarity solution of the Navier-Stokes equations which is valid for an instantaneous time-dependent Re based on gap height of greater than approximately 100, wherein the top and bottom boundary layers remain distinct. The longer time portions of the motion and the final arrest are described by a numerical calculation for intermediate Reynolds number and a low-Reynolds-number analysis.

2006 ◽  
Vol 129 (1) ◽  
pp. 106-115 ◽  
Author(s):  
A. B. Rahimi ◽  
R. Saleh

The unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite rotating circular cylinder with transpiration U0 are investigated when the angular velocity and wall temperature or wall heat flux all vary arbitrarily with time. The free stream is steady and with a strain rate of Γ. An exact solution of the Navier-Stokes equations and energy equation is derived in this problem. A reduction of these equations is obtained by the use of appropriate transformations for the most general case when the transpiration rate is also time-dependent but results are presented only for uniform values of this quantity. The general self-similar solution is obtained when the angular velocity of the cylinder and its wall temperature or its wall heat flux vary as specified time-dependent functions. In particular, the cylinder may rotate with constant speed, with exponentially increasing/decreasing angular velocity, with harmonically varying rotation speed, or with accelerating/decelerating oscillatory angular speed. For self-similar flow, the surface temperature or its surface heat flux must have the same types of behavior as the cylinder motion. For completeness, sample semi-similar solutions of the unsteady Navier-Stokes equations have been obtained numerically using a finite-difference scheme. Some of these solutions are presented for special cases when the time-dependent rotation velocity of the cylinder is, for example, a step-function. All the solutions above are presented for Reynolds numbers, Re=Γa2∕2υ, ranging from 0.1 to 1000 for different values of Prandtl number and for selected values of dimensionless transpiration rate, S=U0∕Γa, where a is cylinder radius and υ is kinematic viscosity of the fluid. Dimensionless shear stresses corresponding to all the cases increase with the increase of Reynolds number and suction rate. The maximum value of the shear stress increases with increasing oscillation frequency and amplitude. An interesting result is obtained in which a cylinder rotating with certain exponential angular velocity function and at particular value of Reynolds number is azimuthally stress-free. Heat transfer is independent of cylinder rotation and its coefficient increases with the increasing suction rate, Reynolds number, and Prandtl number. Interesting means of cooling and heating processes of cylinder surface are obtained using different rates of transpiration.


1962 ◽  
Vol 13 (4) ◽  
pp. 557-569 ◽  
Author(s):  
W. Chester

An investigation is made into the validity of the Oseen equations, for incom-pressible, viscous flow past a body, as an approximation to the Navier-Stokes equations. It is shown that, when the body is such that a reversal of the uniform flow at infinity merely reverses any component of the force on the body without changing its absolute magnitude, that component can be determined correctly to the first order in the Reynolds number, though the detailed velocity field is not correct to this order. Moreover, this force can be deduced simply from a knowledge of the force on the body according to Stokes's approximation.The analysis is also generalized to include the magneto-hydrodynamic effects when the fluid is conducting and the flow takes place in the presence of a magnetic field.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


1976 ◽  
Vol 78 (2) ◽  
pp. 355-383 ◽  
Author(s):  
H. Fasel

The stability of incompressible boundary-layer flows on a semi-infinite flat plate and the growth of disturbances in such flows are investigated by numerical integration of the complete Navier–;Stokes equations for laminar two-dimensional flows. Forced time-dependent disturbances are introduced into the flow field and the reaction of the flow to such disturbances is studied by directly solving the Navier–Stokes equations using a finite-difference method. An implicit finitedifference scheme was developed for the calculation of the extremely unsteady flow fields which arose from the forced time-dependent disturbances. The problem of the numerical stability of the method called for special attention in order to avoid possible distortions of the results caused by the interaction of unstable numerical oscillations with physically meaningful perturbations. A demonstration of the suitability of the numerical method for the investigation of stability and the initial growth of disturbances is presented for small periodic perturbations. For this particular case the numerical results can be compared with linear stability theory and experimental measurements. In this paper a number of numerical calculations for small periodic disturbances are discussed in detail. The results are generally in fairly close agreement with linear stability theory or experimental measurements.


2012 ◽  
Vol 14 (05) ◽  
pp. 1250031
Author(s):  
GUY BERNARD

A global existence result is presented for the Navier–Stokes equations filling out all of three-dimensional Euclidean space ℝ3. The initial velocity is required to have a bell-like form. The method of proof is based on symmetry transformations of the Navier–Stokes equations and a specific upper solution to the heat equation in ℝ3× [0, 1]. This upper solution has a self-similar-like form and models the diffusion process of the heat equation. By a symmetry transformation, the problem is transformed into an equivalent one having a very small initial velocity. Using the upper solution, the equivalent problem is then solved in the time interval [0, 1]. This local solution is then extended to the time interval [0, ∞) by an iterative process. At each step, the problem is extended further in time in an interval of time whose length is greater than one, thus producing the global solution. Each extension is transformed, by an appropriate change of variables, into the first local problem in the time interval [0, 1]. These transformations exploit the diffusive and self-similar-like nature of the upper solution.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


Sign in / Sign up

Export Citation Format

Share Document