scholarly journals Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances

1989 ◽  
Vol 199 ◽  
pp. 569-593 ◽  
Author(s):  
Seung-Joon Lee ◽  
George T. Yates ◽  
T. Yaotsu Wu

In this joint theoretical, numerical and experimental study, we investigate the phenomenon of forced generation of nonlinear waves by disturbances moving steadily with a transcritical velocity through a layer of shallow water. The plane motion considered here is modelled by the generalized Boussinesq equations and the forced Korteweg-de Vries (fKdV) equation, both of which admit two types of forcing agencies in the form of an external surface pressure and a bottom topography. Numerical results are obtained using both theoretical models for the two types of forcings. These results illustrate that within a transcritical speed range, a succession of solitary waves are generated, periodically and indefinitely, to form a procession advancing upstream of the disturbance, while a train of weakly nonlinear and weakly dispersive waves develops downstream of an ever elongating stretch of a uniformly depressed water surface immediately behind the disturbance. This is a beautiful example showing that the response of a dynamic system to steady forcing need not asymptotically tend to a steady state, but can be conspicuously periodic, after an impulsive start, when the system is being forced at resonance.A series of laboratory experiments was conducted with a cambered bottom topography impulsively started from rest to a constant transcritical velocity U, the corresponding depth Froude number F = U/(gh0)½ (g being the gravitational constant and h0 the original uniform water depth) being nearly the critical value of unity. For the two types of forcing, the generalized Boussinesq model indicates that the surface pressure can be more effective in generating the precursor solitary waves than the submerged topography of the same normalized spatial distribution. However, according to the fKdV model, these two types of forcing are entirely equivalent. Besides these and some other rather refined differences, a broad agreement is found between theory and experiment, both in respect of the amplitudes and phases of the waves generated, when the speed is nearly critical (0.9 < F < 1.1) and when the forcing is sufficiently weak (the topography-height to water-depth ratio less than 0.15) to avoid breaking. Experimentally, wave breaking was observed to occur in the precursor solitary waves at low supercritical speeds (about 1.1 < F < 1.2) and in the first few trailing waves at high subcritical speeds (about 0.8 < F < 0.9), when sufficiently forced. For still lower subcritical speeds, the trailing waves behaved more like sinusoidal waves as found in the classical case and the forward-running solitary waves, while still experimentally discernible and numerically predicted for 0.6 > F > 0.2, finally disappear at F ≈ 0.2. In the other direction, as the Froude number is increased beyond F ≈ 1.2, the precursor soliton phenomenon was found also to evanesce as no finite-amplitude solitary waves can outrun, nor can any two-dimensional waves continue to follow, the rapidly moving disturbance. In this supercritical range and for asymptotically large times, all the effects remain only local to the disturbance. Thus, the criterion of the fascinating phenomenon of the generation of precursor solitons is ascertained.

1987 ◽  
Vol 184 ◽  
pp. 75-99 ◽  
Author(s):  
T. Yao-Tsu Wu

This study investigates the recently identified phenomenon whereby a forcing disturbance moving steadily with a transcritical velocity in shallow water can generate, periodically, a succession of solitary waves, advancing upstream of the disturbance in procession, while a train of weakly nonlinear and weakly dispersive waves develops downstream of a region of depressed water surface trailing just behind the disturbance. This phenomenon was numerically discovered by Wu & Wu (1982) based on the generalized Boussinesq model for describing two-dimensional long waves generated by moving surface pressure or topography. In a joint theoretical and experimental study, Lee (1985) found a broad agreement between the experiment and two theoretical models, the generalized Boussinesq and the forced Korteweg-de Vries (fKdV) equations, both containing forcing functions. The fKdV model is applied in the present study to explore the basic mechanism underlying the phenomenon.To facilitate the analysis of the stability of solutions of the initial-boundary-value problem of the fKdV equation, a family of forced steady solitary waves is found. Any such solution, if once established, will remain permanent in form in accordance with the uniqueness theorem shown here. One of the simplest of the stationary solutions, which is a one-parameter family and can be scaled into a universal similarity form, is chosen for stability calculations. As a test of the computer code, the initially established stationary solution is found to be numerically permanent in form with fractional uncertainties of less than 2% after the wave has traversed, under forcing, the distance of 600 water depths. The other numerical results show that when the wave is initially so disturbed as to have to rise from the rest state, which is taken as the initial value, the same phenomenon of the generation of upstream-advancing solitons is found to appear, with a definite time period of generation. The result for this similarity family shows that the period of generation, Ts, and the scaled amplitude α of the solitons so generated are related by the formula Ts = const α−3/2. This relation is further found to be in good agreement with the first-principle prediction derived here based on mass, momentum and energy considerations of the fKdV equation.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Marin Marin ◽  
M. M. Bhatti

AbstractThe present study deals with the head-on collision process between capillary–gravity solitary waves in a finite channel. The present mathematical modeling is based on Nwogu’s Boussinesq model. This model is suitable for both shallow and deep water waves. We have considered the surface tension effects. To examine the asymptotic behavior, we employed the Poincaré–Lighthill–Kuo method. The resulting series solutions are given up to third-order approximation. The physical features are discussed for wave speed, head-on collision profile, maximum run-up, distortion profile, the velocity at the bottom, and phase shift profile, etc. A comparison is also given as a particular case in our study. According to the results, it is noticed that the free parameter and the surface tension tend to decline the solitary-wave profile significantly. However, the maximum run-up amplitude was affected in great measure due to the surface tension and the free parameter.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammad H. Jabbari ◽  
Parviz Ghadimi ◽  
Ali Masoudi ◽  
Mohammad R. Baradaran

Using one-dimensional Beji & Nadaoka extended Boussinesq equation, a numerical study of solitary waves over submerged breakwaters has been conducted. Two different obstacles of rectangular as well as circular geometries over the seabed inside a channel have been considered in view of solitary waves passing by. Since these bars possess sharp vertical edges, they cannot directly be modeled by Boussinesq equations. Thus, sharply sloped lines over a short span have replaced the vertical sides, and the interactions of waves including reflection, transmission, and dispersion over the seabed with circular and rectangular shapes during the propagation have been investigated. In this numerical simulation, finite element scheme has been used for spatial discretization. Linear elements along with linear interpolation functions have been utilized for velocity components and the water surface elevation. For time integration, a fourth-order Adams-Bashforth-Moulton predictor-corrector method has been applied. Results indicate that neglecting the vertical edges and ignoring the vortex shedding would have minimal effect on the propagating waves and reflected waves with weak nonlinearity.


2013 ◽  
Vol 20 (3) ◽  
pp. 267-285 ◽  
Author(s):  
D. Dutykh ◽  
H. Kalisch

Abstract. Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up.


1976 ◽  
Vol 1 (15) ◽  
pp. 161 ◽  
Author(s):  
Taizo Hayashi ◽  
Masujiro Shirai

The added masses of large tankers berthing to dolphins are studied both theoretically and experimentally. The movements of large vessels in shallow water in the directions normal to their planes of symmetry cause counterflows of appreciable velocities under the hulls. The inertia of these counter-flows is shown to have an important effect on the added masses of the vessels. A theoretical formula is derived to determine the mass factor of an ocean vessel in shallow water as a function of the ratio Draught/Water- depth, the Froude number of the vessel and the coefficient of head loss of the counter-flow under the hull. Experiment is made to determine the mass factor. Comparison:, between the theory and the experiment shows a good agreement.


1988 ◽  
Vol 31 (12) ◽  
pp. 3550 ◽  
Author(s):  
D. I. Pullin ◽  
R. H. J. Grimshaw

Author(s):  
Jingbo Wang

As the first of two companion papers, theoretical models are proposed to describe the motions of free falling wedges vertically entering the water surface at Froude numbers: 1 ≤ Fn < 9 (Here, the Froude number is defined as Fn=V0/gc0). The time evolutions of the penetration depth, the velocity and the acceleration are analyzed and expressed explicitly The maximum and average accelerations are predicted. The drag (slamming) coefficients are extensively studied. It is found that for the light wedge the transient drag coefficients have slow variation in the first half stage and rapid variation in the last half stage, and for the heavy wedge the transient drag coefficients vary slowly during the whole stage and can be treated as constant. The theoretical results are compared with numerical simulations by nonlinear BEM (Wang & Faltinsen (2010, 2013)), and good agreements are obtained.


Sign in / Sign up

Export Citation Format

Share Document