Response of the shear layers separating from a circular cylinder to small-amplitude rotational oscillations

1991 ◽  
Vol 231 ◽  
pp. 481-499 ◽  
Author(s):  
J. R. Filler ◽  
P. L. Marston ◽  
W. C. Mih

The frequency response of the shear layers separating from a circular cylinder subject to small-amplitude rotational oscillations has been investigated experimentally in water for the Reynolds number (Re) range 250 to 1200. A hot-film anemometer was placed in the separated shear layers from 1 to 1.5 diameters downstream of the cylinder, and connected to a lock-in analyser. by referencing the lock-in analyser to the cylinder oscillations, the amplitude and phase of the response to different frequency oscillations were measured directly. It is shown that rotational oscillations corresponding to cylinder peripheral speeds between 0.5 and 3% of the free stream can be used to influence the primary (Kármán) mode of vortex generation. For Re greater than ≈ 500, such oscillations can also force the shear-layer vortices associated with the instability of the separating shear layers. Corresponding to the primary and shear-layer modes are two distinct peaks in response amplitude versus frequency curves, and two very different phase versus frequency curves. The response of the shear layers (and near wake) in the range of Kármán frequency suggests qualitative similarities with the response of an oscillator near resonance. Forced oscillations in the higher-frequency shear-layer mode range are simply convected by the shear layers. Close to the cylinder, the shear-layer response is shown to be comparable to that of generic free shear layers studied by others.

2010 ◽  
Vol 661 ◽  
pp. 294-315 ◽  
Author(s):  
J. DAVITIAN ◽  
D. GETSINGER ◽  
C. HENDRICKSON ◽  
A. R. KARAGOZIAN

In a recent paper (Megerianet al.,J. Fluid Mech., vol. 593, 2007, pp. 93–129), experimental exploration of the behaviour of transverse-jet near-field shear-layer instabilities suggests a significant change in the character of the instability as jet-to-crossflow velocity ratiosRare reduced below a critical range. The present study provides a detailed exploration of and additional insights into this transition, with quantification of the growth of disturbances at various locations along and about the jet shear layer, frequency tracking and response of the transverse jet to very strong single-mode forcing, creating a ‘lock-in’ response in the shear layer. In all instances, there is clear evidence that the flush transverse jet's near-field shear layer becomes globally unstable whenRlies at or below a critical range near 3. These findings have important implications for and provide the underlying strategy by which active control of the transverse jet may be developed.


2018 ◽  
Vol 858 ◽  
pp. 315-351 ◽  
Author(s):  
Ki-Ha Kim ◽  
Jung-Il Choi

In this paper, flow over a streamwise oscillating circular cylinder is numerically simulated to examine the effects of the driving amplitude and frequency on the distribution of the lock-in regions in laminar flows. At $Re=100$, lock-in is categorized according to the spectral features of the lift coefficient as two different lock-in phenomena: harmonic and subharmonic lock-in. These lock-in phenomena are represented as maps on the driving amplitude–frequency plane, which have subharmonic lock-in regions and two harmonic lock-in regions. The frequency range of the subharmonic region is shifted to lower frequencies with increasing amplitude, and the lower boundary of this subharmonic region is successfully predicted. A symmetric harmonic region with a symmetric vortex pattern is observed in a certain velocity range for a moving cylinder. Aerodynamic features induced by different flow patterns in each region are presented on the driving amplitude–frequency plane. The lock-in region and aerodynamic features at $Re=200$ and $40$ are compared with the results for $Re=100$. A subharmonic region and two harmonic regions are observed at $Re=200$, and these show the same features as for $Re=100$ at a low driving amplitude. Lock-in at $Re=40$ also shows one subharmonic region and two harmonic regions. However, compared with the $Re=100$ case, the symmetric harmonic lock-in is dominant. The features of aerodynamic force at $Re=200$ and $40$ are represented on a force map, which shows similar characteristics in corresponding regions for the $Re=100$ case.


2018 ◽  
Vol 30 (9) ◽  
pp. 4141-4154
Author(s):  
Abbas Ebrahimi ◽  
Majid Hajipour ◽  
Kamran Ghamkhar

PurposeThe purpose of this paper is to control flow separation over a NACA 4415 airfoil by applying unsteady forces to the separated shear layers using dielectric barrier discharge (DBD) plasma actuators. This novel flow control method is studied under conditions which the airfoil angle of attack is 18°, and Reynolds number based on chord length is 5.5 × 105.Design/methodology/approachLarge eddy simulation of the turbulent flow is used to capture vortical structures through the airfoil wake. Power spectral density analysis of the baseline flow indicates dominant natural frequencies associated with “shear layer mode” and “wake mode.” The wake mode frequency is used simultaneously to excite separated shear layers at both the upper surface and the trailing edge of the airfoil (dual-position excitation), and it is also used singly to excite the upper surface shear layer (single-position excitation).FindingsBased on the results, actuations manipulate the shear layers instabilities and change the wake patterns considerably. It is revealed that in the single-position excitation case, the vortices shed from the upper surface shear layer are more coherent than the dual-position excitation case. The maximum value of lift coefficient and lift-to-drag ratio is achieved, respectively, by single-position excitation as well as dual-position excitation.Originality/valueThe paper contributes to the understanding and progress of DBD plasma actuators for flow control applications. Further, this research could be a beneficial solution for the promising design of advanced low speed flying vehicles.


2018 ◽  
Vol 11 (97) ◽  
pp. 4825-4843
Author(s):  
A. Mehmood ◽  
M. R. Hajj ◽  
I. Akhtar ◽  
M. Ghommem ◽  
L. T. Watson ◽  
...  

2005 ◽  
Vol 53 (620) ◽  
pp. 408-413
Author(s):  
Mikiya Araki ◽  
Jun Osaka ◽  
Osamu Imamura ◽  
Mitsuhiro Tsue ◽  
Michikata Kono

2003 ◽  
Vol 125 (4) ◽  
pp. 710-715
Author(s):  
Angel Sanz-Andre´s ◽  
Gonzalo Tevar ◽  
Francisco-Javier Rivas

The increasing use of very light structures in aerospace applications are given rise to the need of taking into account the effects of the surrounding media in the motion of a structure (as for instance, in modal testing of solar panels or antennae) as it is usually performed in the motion of bodies submerged in water in marine applications. New methods are in development aiming at to determine rigid-body properties (the center of mass position and inertia properties) from the results of oscillations tests (at low frequencies during modal testing, by exciting the rigid-body modes only) by using the equations of the rigid-body dynamics. As it is shown in this paper, the effect of the surrounding media significantly modifies the oscillation dynamics in the case of light structures and therefore this effect should be taken into account in the development of the above-mentioned methods. The aim of the paper is to show that, if a central point exists for the aerodynamic forces acting on the body, the motion equations for the small amplitude rotational and translational oscillations can be expressed in a form which is a generalization of the motion equations for a body in vacuum, thus allowing to obtain a physical idea of the motion and aerodynamic effects and also significantly simplifying the calculation of the solutions and the interpretation of the results. In the formulation developed here the translational oscillations and the rotational motion around the center of mass are decoupled, as is the case for the rigid-body motion in vacuum, whereas in the classical added mass formulation the six motion equations are coupled. Also in this paper the nonsteady motion of small amplitude of a rigid body submerged in an ideal, incompressible fluid is considered in order to define the conditions for the existence of the central point in the case of a three-dimensional body. The results here presented are also of interest in marine applications.


2016 ◽  
Vol 811 ◽  
pp. 37-50 ◽  
Author(s):  
Giuseppe A. Rosi ◽  
David E. Rival

A constantly accelerating circular plate was investigated towards understanding the effect of non-stationarity on shear-layer entrainment and topology. Dye visualizations and time-resolved particle image velocimetry measurements were collected for normalized accelerations spanning three orders of magnitude. Increasing acceleration acts to organize shear-layer topology. Specifically, the Kelvin–Helmholtz instabilities within the shear layer better adhered to a circular path and exhibited consistent and repeatable spacing. Normalized starting-vortex circulation was observed to collapse with increasing acceleration, which one might not expect due to increased levels of mixing at higher instantaneous Reynolds numbers. The entrainment rate was shown to increase nonlinearly with increasing acceleration. This was attributed to closer spacing between instabilities, which better facilitates the roll-up of fluid between the shear layer and vortex core. The shear-layer organization observed at higher accelerations was associated with smaller spacings between instabilities. Specifically, analogous point-vortex simulations demonstrated that decreasing the spacing between instabilities acts to localize and dampen perturbations within an accelerating shear layer.


Sign in / Sign up

Export Citation Format

Share Document