Oscillatory flow in a stepped channel

1993 ◽  
Vol 247 ◽  
pp. 179-204 ◽  
Author(s):  
O. R. Tutty ◽  
T. J. Pedley

Two-dimensional, unsteady flow of a viscous, incompressible fluid in a stepped channel has been studied by the numerical solution of the Navier–Stokes equation using an accurate finite-difference method.With a sinusoidal mass flow rate, the problem has three governing parameters: the Reynolds number, the Strouhal number, and the step height. The effects on the flow of varying all three parameters has been investigated systematically. In appropriate parameter regimes, a strong ‘vortex wave’ is generated during the forward phase when the flow is over the step into the expansion. Secondary effects on the wave can result in a complex flow pattern with each major structure of the flow consisting of an eddy with more than one core. No such wave is found during the reverse phase of the flow. The generation and development of the wave is examined in some detail, and our results are compared and contrasted with those of previous studies, both experimental and theoretical, of flow in non-uniform vessels.

2013 ◽  
Vol 729 ◽  
pp. 285-308 ◽  
Author(s):  
Maciej J. Balajewicz ◽  
Earl H. Dowell ◽  
Bernd R. Noack

AbstractWe generalize the POD-based Galerkin method for post-transient flow data by incorporating Navier–Stokes equation constraints. In this method, the derived Galerkin expansion minimizes the residual like POD, but with the power balance equation for the resolved turbulent kinetic energy as an additional optimization constraint. Thus, the projection of the Navier–Stokes equation on to the expansion modes yields a Galerkin system that respects the power balance on the attractor. The resulting dynamical system requires no stabilizing eddy-viscosity term – contrary to other POD models of high-Reynolds-number flows. The proposed Galerkin method is illustrated with two test cases: two-dimensional flow inside a square lid-driven cavity and a two-dimensional mixing layer. Generalizations for more Navier–Stokes constraints, e.g. Reynolds equations, can be achieved in straightforward variation of the presented results.


1999 ◽  
Vol 393 ◽  
pp. 99-121 ◽  
Author(s):  
J. R. CHAPLIN

History forces on a stationary cylinder in arbitrary unsteady rectilinear flow are calculated by means of a model based on the asymptotic properties of the steady-state wake. The results capture many features found in numerical solutions of the Navier–Stokes equation for the same flows, though quantitative agreement deteriorates as the Reynolds number increases over the range 2 to 40. The cases studied are the impulsive start, stop, and reverse, and oscillatory flow.


Author(s):  
Xinxin Wang ◽  
Liuyi Huang ◽  
Yanli Tang ◽  
Fenfang Zhao ◽  
Peng Sun

Abstract The stranded rope is one of the important components of the fishery aquaculture equipment. We investigate the fluid flow through two-dimensional stranded rope by direct simulation of the Navier-Stokes equations. We show that for different kinds of stranded rope structures, there are significant differences in hydrodynamic performance. This paper established a numerical model of unsteady flow past the stranded rope based on the Navier-Stokes equation and Morison formulas to study the hydrodynamic characteristics of three-stranded rope, four-stranded rope, and seven-stranded rope, respectively. The turbulence flow was simulated using Standard k-ε model and Shear-Stress Transport k-ω (SST) model. The flow distribution strongly depends on the Reynolds number, a range of 3,900 and 30,000. With increasing Reynolds number, the alternate eddy formation and shedding were repeated behind the stranded ropes. Such parameters of hydrodynamic characteristics of multiple stranded ropes were calculated as the lift and drag coefficients, and vortex shedding frequencies. The numerical simulation results presented flow performances of different cross sections (a, b, c, d) at different Reynolds numbers. However, Reynolds number has no significant impact on the Strouhal number for the same attack angle of the stranded rope.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


2011 ◽  
Vol 21 (03) ◽  
pp. 421-457 ◽  
Author(s):  
RAPHAËL DANCHIN ◽  
MARIUS PAICU

Models with a vanishing anisotropic viscosity in the vertical direction are of relevance for the study of turbulent flows in geophysics. This motivates us to study the two-dimensional Boussinesq system with horizontal viscosity in only one equation. In this paper, we focus on the global existence issue for possibly large initial data. We first examine the case where the Navier–Stokes equation with no vertical viscosity is coupled with a transport equation. Second, we consider a coupling between the classical two-dimensional incompressible Euler equation and a transport–diffusion equation with diffusion in the horizontal direction only. For both systems, we construct global weak solutions à la Leray and strong unique solutions for more regular data. Our results rest on the fact that the diffusion acts perpendicularly to the buoyancy force.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Siddharth Shankar Bhatt ◽  
Amit Medhavi ◽  
R. S. Gupta ◽  
U. P. Singh

In the present investigation, problem of heat transfer has been studied during peristaltic motion of a viscous incompressible fluid for two-dimensional nonuniform channel with permeable walls under long wavelength and low Reynolds number approximation. Expressions for pressure, friction force, and temperature are obtained. The effects of different parameters on pressure, friction force, and temperature have been discussed through graphs.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hassan Eltayeb ◽  
Imed Bachar ◽  
Yahya T. Abdalla

Abstract In this study, the double Laplace Adomian decomposition method and the triple Laplace Adomian decomposition method are employed to solve one- and two-dimensional time-fractional Navier–Stokes problems, respectively. In order to examine the applicability of these methods some examples are provided. The presented results confirm that the proposed methods are very effective in the search of exact and approximate solutions for the problems. Numerical simulation is used to sketch the exact and approximate solution.


2014 ◽  
Vol 554 ◽  
pp. 665-669
Author(s):  
Leila Jahanshaloo ◽  
Nor Azwadi Che Sidik

The Lattice Boltzmann Method (LBM) is a potent numerical technique based on kinetic theory, which has been effectively employed in various complicated physical, chemical and fluid mechanics problems. In this paper multi-relaxation lattice Boltzmann model (MRT) coupled with a Large Eddy Simulation (LES) and the equation are applied for driven cavity flow at different Reynolds number (1000-10000) and the results are compared with the previous published papers which solve the Navier stokes equation directly. The comparisons between the simulated results show that the lattice Boltzmann method has the capacity to solve the complex flows with reasonable accuracy and reliability. Keywords: Two-dimensional flows, Lattice Boltzmann method, Turbulent flow, MRT, LES.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Sunggeun Lee ◽  
Shin-Kun Ryi ◽  
Hankwon Lim

We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.


2008 ◽  
Vol 614 ◽  
pp. 315-327 ◽  
Author(s):  
UWE EHRENSTEIN ◽  
FRANÇOIS GALLAIRE

A separated boundary-layer flow at the rear of a bump is considered. Two-dimensional equilibrium stationary states of the Navier–Stokes equations are determined using a nonlinear continuation procedure varying the bump height as well as the Reynolds number. A global instability analysis of the steady states is performed by computing two-dimensional temporal modes. The onset of instability is shown to be characterized by a family of modes with localized structures around the reattachment point becoming almost simultaneously unstable. The optimal perturbation analysis, by projecting the initial disturbance on the set of temporal eigenmodes, reveals that the non-normal modes are able to describe localized initial perturbations associated with the large transient energy growth. At larger time a global low-frequency oscillation is found, accompanied by a periodic regeneration of the flow perturbation inside the bubble, as the consequence of non-normal cancellation of modes. The initial condition provided by the optimal perturbation analysis is applied to Navier–Stokes time integration and is shown to trigger the nonlinear ‘flapping’ typical of separation bubbles. It is possible to follow the stationary equilibrium state on increasing the Reynolds number far beyond instability, ruling out for the present flow case the hypothesis of some authors that topological flow changes are responsible for the ‘flapping’.


Sign in / Sign up

Export Citation Format

Share Document