Eddy viscosity of three-dimensional flow

1995 ◽  
Vol 288 ◽  
pp. 249-264 ◽  
Author(s):  
A. Wirth ◽  
S. Gama ◽  
U. Frisch

Detailed theoretical and numerical results are presented for the eddy viscosity of three-dimensional forced spatially periodic incompressible flow.As shown by Dubrulle & Frisch (1991), the eddy viscosity, which is in general a fourth-order anisotropic tensor, is expressible in terms of the solution of auxiliary problems. These are, essentially, three-dimensional linearized Navier–Stokes equations which must be solved numerically.The dynamics of weak large-scale perturbations of wavevector k is determined by the eigenvalues – called here ‘eddy viscosities’ – of a two by two matrix, obtained by contracting the eddy viscosity tensor with two k-vectors and projecting onto the plane transverse to k to ensure incompressibility. As a consequence, eddy viscosities in three dimensions, but not in two, can become complex. It is shown that this is ruled out for flow with cubic symmetry, the eddy viscosities of which may, however, become negative.An instance is the equilateral ABC-flow (A = B = C = 1). When the wavevector k is in any of the three coordinate planes, at least one of the eddy viscosities becomes negative for R = 1/v > Rc [bsime ] 1.92. This leads to a large-scale instability occurring for a value of the Reynolds number about seven times smaller than instabilities having the same spatial periodicity as the basic flow.

2006 ◽  
Vol 2006 ◽  
pp. 1-14 ◽  
Author(s):  
Eduard Feireisl ◽  
Josef Málek

We establish long-time and large-data existence of a weak solution to the problem describing three-dimensional unsteady flows of an incompressible fluid, where the viscosity and heat-conductivity coefficients vary with the temperature. The approach reposes on considering the equation for the total energy rather than the equation for the temperature. We consider the spatially periodic problem.


2016 ◽  
Vol 799 ◽  
pp. 246-264 ◽  
Author(s):  
K. Seshasayanan ◽  
A. Alexakis

We study the linear stage of the dynamo instability of a turbulent two-dimensional flow with three components $(u(x,y,t),v(x,y,t),w(x,y,t))$ that is sometimes referred to as a 2.5-dimensional (2.5-D) flow. The flow evolves based on the two-dimensional Navier–Stokes equations in the presence of a large-scale drag force that leads to the steady state of a turbulent inverse cascade. These flows provide an approximation to very fast rotating flows often observed in nature. The low dimensionality of the system allows for the realization of a large number of numerical simulations and thus the investigation of a wide range of fluid Reynolds numbers $Re$, magnetic Reynolds numbers $Rm$ and forcing length scales. This allows for the examination of dynamo properties at different limits that cannot be achieved with three-dimensional simulations. We examine dynamos for both large and small magnetic Prandtl-number turbulent flows $Pm=Rm/Re$, close to and away from the dynamo onset, as well as dynamos in the presence of scale separation. In particular, we determine the properties of the dynamo onset as a function of $Re$ and the asymptotic behaviour in the large $Rm$ limit. We are thus able to give a complete description of the dynamo properties of these turbulent 2.5-D flows.


2019 ◽  
Vol 873 ◽  
pp. 89-109 ◽  
Author(s):  
Anagha Madhusudanan ◽  
Simon. J. Illingworth ◽  
Ivan Marusic

The wall-normal extent of the large-scale structures modelled by the linearized Navier–Stokes equations subject to stochastic forcing is directly compared to direct numerical simulation (DNS) data. A turbulent channel flow at a friction Reynolds number of $Re_{\unicode[STIX]{x1D70F}}=2000$ is considered. We use the two-dimensional (2-D) linear coherence spectrum (LCS) to perform the comparison over a wide range of energy-carrying streamwise and spanwise length scales. The study of the 2-D LCS from DNS indicates the presence of large-scale structures that are coherent over large wall-normal distances and that are self-similar. We find that, with the addition of an eddy viscosity profile, these features of the large-scale structures are captured by the linearized equations, except in the region close to the wall. To further study this coherence, a coherence-based estimation technique, spectral linear stochastic estimation, is used to build linear estimators from the linearized Navier–Stokes equations. The estimator uses the instantaneous streamwise velocity field or the 2-D streamwise energy spectrum at one wall-normal location (obtained from DNS) to predict the same quantity at a different wall-normal location. We find that the addition of an eddy viscosity profile significantly improves the estimation.


Author(s):  
Paolo Luchini

A research line is reviewed which, over a few years, led to a substantial change of perspective about the simplified models that underlie the description of quasi-onedimensional streams, their instabilities, and their effects upon sandy beds. Even when the flow is assumed to be laminar, the Saint-Venant equation of quasi-onedimensional fluid flow can be formulated in more than one manner; it will be shown that only one of these choices is consistent with the complete three-dimensional Navier- Stokes equations. When the flow is turbulent, an added complication is the presence of a turbulence model, most often of the eddy-viscosity type; it will be shown that such a model can be in strong contrast with a direct numerical simulation of the same phenomenon, even to the point of producing results of opposite sign. In addition, the complete numerical simulation of flow past an undulated bottom exhibits a non-monotonic approach to its long-wave, quasi-onedimensional limit, with a surprising resonance that has no laminar counterpart and must become the subject of future investigations.


1977 ◽  
Vol 83 (1) ◽  
pp. 1-31 ◽  
Author(s):  
G. D. Mallinson ◽  
G. De Vahl Davis

The solution of the steady-state Navier–Stokes equations in three dimensions has been obtained by a numerical method for the problem of natural convection in a rectangular cavity as a result of differential side heating. In the past, this problem has generally been treated as though it were two-dimensional. The solutions explore the three-dimensional motion generated by the presence of no-slip adiabatic end walls. For Ra = 104, the three-dimensional motion is shown to be the result of the inertial interaction of the rotating flow with the stationary walls together with a contribution arising from buoyancy forces generated by longitudinal temperature gradients. The inertial effect is inversely dependent on the Prandtl number, whereas the thermal effect is nearly constant. For higher values of Ra, multiple longitudinal flows develop which are a delicate function of Ra, Pr and the cavity aspect ratios.


1984 ◽  
Vol 106 (3) ◽  
pp. 682-691 ◽  
Author(s):  
I. M. Khalil ◽  
H. G. Weber

The structure of developing flows inside curved channels has been investigated numerically using the time-averaged Navier Stokes equations in three dimensions. The equations are solved in primitive variables using finite difference techniques. The solution procedure involves a combination of repeated space-marching integration of the governing equations and correction for elliptic effects between two marching sweeps. Type-dependent differencing is used to permit downstream marching even in the reverse-flow regions. The procedure is shown to allow efficient calculations of turbulent flow inside strongly curved channels as well as laminar flow inside a moderately curved passage. Results obtained in both cases indicate that the flow structure is strongly controlled by local imbalance between centrifugal forces and pressure gradients. Furthermore, distortion of primary flow due to migration of low momentum fluid caused by secondary flow is found to be largely dependent on the Reynolds number and Dean number. Comparison with experimental data is also included.


New classes of exact solutions of the incompressible Navier-Stokes equations are presented. The method of solution has its origins in that first used by Kelvin ( Phil. Mag . 24 (5), 188-196 (1887)) to solve the linearized equations governing small disturbances in unbounded plane Couette flow. The new solutions found describe arbitrarily large, spatially periodic disturbances within certain two- and three-dimensional ‘ basic ’ shear flows of unbounded extent. The admissible classes of basic flow possess spatially uniform strain rates; they include two- and three- dimensional stagnation point flows and two-dimensional flows with uniform vorticity. The disturbances, though spatially periodic, have time-dependent wavenumber and velocity components. It is found that solutions for the disturbance do not always decay to zero ; but in some instances grow continuously in spite of viscous dissipation. This behaviour is explained in terms of vorticity dynamics.


Author(s):  
Joel Avrin

We consider a class of dynamical systems of the form du/dt + Bu + F(u) = b on a Hilbert space H where the self-adjoint linear operator B is positive with a strictly positive first eigenvalue and b = b0 + b1 such that (b0, Bv) = 0 for all v ∈ H. Given two solutions u and v, we set u − v = w and show that if u(t) → 0 and v(t) → 0 as t → ∞, then in fact eventually w(t) → 0 at an exponential rate. We apply these results to the two-dimensional Navier–Stokes equations (NSEs), the three-dimensional hyperviscous NSEs and the three-dimensional NS-α equations on bounded domains and also establish stability in the sense of Lyapunov; for these systems we assume a condition on b1 to impose decaying turbulence. We also show for the case of decaying turbulence that Leray solutions of the three-dimensional NSEs on bounded domains eventually become regular in addition to decaying to zero. In particular, they eventually satisfy the conditions needed for the abstract stability results.


2020 ◽  
Vol 10 (1) ◽  
pp. 501-521 ◽  
Author(s):  
Michal Bathory ◽  
Miroslav Bulíček ◽  
Josef Málek

Abstract We prove that there exists a weak solution to a system governing an unsteady flow of a viscoelastic fluid in three dimensions, for arbitrarily large time interval and data. The fluid is described by the incompressible Navier-Stokes equations for the velocity v, coupled with a diffusive variant of a combination of the Oldroyd-B and the Giesekus models for a tensor 𝔹. By a proper choice of the constitutive relations for the Helmholtz free energy (which, however, is non-standard in the current literature, despite the fact that this choice is well motivated from the point of view of physics) and for the energy dissipation, we are able to prove that 𝔹 enjoys the same regularity as v in the classical three-dimensional Navier-Stokes equations. This enables us to handle any kind of objective derivative of 𝔹, thus obtaining existence results for the class of diffusive Johnson-Segalman models as well. Moreover, using a suitable approximation scheme, we are able to show that 𝔹 remains positive definite if the initial datum was a positive definite matrix (in a pointwise sense). We also show how the model we are considering can be derived from basic balance equations and thermodynamical principles in a natural way.


Sign in / Sign up

Export Citation Format

Share Document