Instabilities of conical flows causing steady bifurcations

1998 ◽  
Vol 366 ◽  
pp. 33-85 ◽  
Author(s):  
VLADIMIR SHTERN ◽  
FAZLE HUSSAIN

A new stability approach is developed for a wide class of strongly non-parallel axisymmetric flows of a viscous incompressible fluid. This approach encompasses all conical flows, and all steady and weakly unsteady disturbances, while prior studies were limited to specific flows and particular disturbances. A specially derived form of the Navier–Stokes equations allows the exact reduction of the linear stability problem to a system of ordinary differential equations. We found that disturbances originating at the boundaries of a similarity region cause a variety of steady bifurcations. Consideration of the still fluid allows disturbances to be classified into inner, outer and global modes, depending on the boundary conditions perturbed. Then we identify and study modes which cause bifurcation as the Reynolds number increases. The study provides improved understanding of (a) azimuthal symmetry breaking, (b) genesis of swirl, (c) onset of heat convection, (d) hydromagnetic dynamo, (e) hysteretic transitions, and (f) jump flow separation. We also discover and analyse two new bifurcations: (g) fold catastrophes and (h) appearance of radial oscillations in swirl-free jets. The stability analysis reveals that bifurcations (a), (c) and (f) are caused by inner perturbations, bifurcations (b), (d), (e) and (g) by outer perturbations, and bifurcation (h) by global perturbations. We deduce amplitude equations to describe the nonlinear spatiotemporal development of disturbances near the critical Reynolds numbers for (b) and (g). Disturbances switching between the basic and secondary steady states are found to grow monotonically with time.

2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


1971 ◽  
Vol 47 (2) ◽  
pp. 321-335 ◽  
Author(s):  
Jon Lee

The truncated Burgers models have a unique equilibrium state which is defined continuously for all the Reynolds numbers and attainable from a realizable class of initial disturbances. Hence, they represent a sequence of convergent approximations to the original (untruncated) Burgers problem. We have pointed out that consideration of certain degenerate equilibrium states can lead to the successive turbulence-turbulence transitions and finite-jump transitions that were suggested by Case & Chiu. As a prototype of the Navier–Stokes equations, Burgers model can simulate the initial-value type of numerical integration of the Fourier amplitude equations for a turbulent channel flow. Thus, the Burgers model dynamics display certain idiosyncrasies of the actual channel flow problem described by a truncated set of Fourier amplitude equations, which includes only a modest number of modes due to the limited capability of the computer at hand.


1976 ◽  
Vol 73 (1) ◽  
pp. 153-164 ◽  
Author(s):  
P.-A. Mackrodt

The linear stability of Hagen-Poiseuille flow (Poiseuille pipe flow) with superimposed rigid rotation against small three-dimensional disturbances is examined at finite and infinite axial Reynolds numbers. The neutral curve, which is obtained by numerical solution of the system of perturbation equations (derived from the Navier-Stokes equations), has been confirmed for finite axial Reynolds numbers by a few simple experiments. The results suggest that, at high axial Reynolds numbers, the amount of rotation required for destabilization could be small enough to have escaped notice in experiments on the transition to turbulence in (nominally) non-rotating pipe flow.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Graham Ashcroft ◽  
Christian Frey ◽  
Kathrin Heitkamp ◽  
Christian Weckmüller

This is the first part of a series of two papers on unsteady computational fluid dynamics (CFD) methods for the numerical simulation of aerodynamic noise generation and propagation. In this part, the stability, accuracy, and efficiency of implicit Runge–Kutta schemes for the temporal integration of the compressible Navier–Stokes equations are investigated in the context of a CFD code for turbomachinery applications. Using two model academic problems, the properties of two explicit first stage, singly diagonally implicit Runge–Kutta (ESDIRK) schemes of second- and third-order accuracy are quantified and compared with more conventional second-order multistep methods. Finally, to assess the ESDIRK schemes in the context of an industrially relevant configuration, the schemes are applied to predict the tonal noise generation and transmission in a modern high bypass ratio fan stage and comparisons with the corresponding experimental data are provided.


1976 ◽  
Vol 78 (2) ◽  
pp. 355-383 ◽  
Author(s):  
H. Fasel

The stability of incompressible boundary-layer flows on a semi-infinite flat plate and the growth of disturbances in such flows are investigated by numerical integration of the complete Navier–;Stokes equations for laminar two-dimensional flows. Forced time-dependent disturbances are introduced into the flow field and the reaction of the flow to such disturbances is studied by directly solving the Navier–Stokes equations using a finite-difference method. An implicit finitedifference scheme was developed for the calculation of the extremely unsteady flow fields which arose from the forced time-dependent disturbances. The problem of the numerical stability of the method called for special attention in order to avoid possible distortions of the results caused by the interaction of unstable numerical oscillations with physically meaningful perturbations. A demonstration of the suitability of the numerical method for the investigation of stability and the initial growth of disturbances is presented for small periodic perturbations. For this particular case the numerical results can be compared with linear stability theory and experimental measurements. In this paper a number of numerical calculations for small periodic disturbances are discussed in detail. The results are generally in fairly close agreement with linear stability theory or experimental measurements.


2010 ◽  
Vol 656 ◽  
pp. 189-204 ◽  
Author(s):  
ILIA V. ROISMAN

This theoretical study is devoted to description of fluid flow and heat transfer in a spreading viscous drop with phase transition. A similarity solution for the combined full Navier–Stokes equations and energy equation for the expanding lamella generated by drop impact is obtained for a general case of oblique drop impact with high Weber and Reynolds numbers. The theory is applicable to the analysis of the phenomena of drop solidification, target melting and film boiling. The theoretical predictions for the contact temperature at the substrate surface agree well with the existing experimental data.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Wen-Juan Wang ◽  
Yan Jia

We study the stability issue of the generalized 3D Navier-Stokes equations. It is shown that if the weak solutionuof the Navier-Stokes equations lies in the regular class∇u∈Lp(0,∞;Bq,∞0(ℝ3)),(2α/p)+(3/q)=2α,2<q<∞,0<α<1, then every weak solutionv(x,t)of the perturbed system converges asymptotically tou(x,t)asvt-utL2→0,t→∞.


Author(s):  
Guillermo E. Ovando ◽  
Juan C. Prince ◽  
Sandy L. Ovando

Fluid dynamics for a Newtonian fluid in the absence of body forces in a two-dimensional cavity with top and bottom curved walls was studied numerically. The vertical walls are fixed and the curved walls are in motion. The Navier-Stokes equations were solved using the finite element method combined with the operator splitting scheme. We analyzed the behaviour of the velocity fields, the vorticity fields and the velocity profiles of the fluid inside the cavity. The analysis was carried out for two different Reynolds numbers of 50 and 500 with two ratios (R = 1, −1) of the top to the bottom curved lid speed. For these values of parameters the flow is characterized by vortex formation inside the cavity. The spatial symmetry on the flow patterns are also investigated. We found that when the velocities of the top and bottom walls have opposite direction only one cell is formed in the central part of the cavity; however when the velocities of the top and bottom walls have the same direction the vortex formation inside the cavity is more complex.


Sign in / Sign up

Export Citation Format

Share Document