scholarly journals A new portable ice-core drilling machine: application to tephra studies

1998 ◽  
Vol 44 (146) ◽  
pp. 179-181 ◽  
Author(s):  
J. M. Casas ◽  
F. Sàbat ◽  
J. M. Vilaplana ◽  
J. M. Parés ◽  
D. M. Pomeroy

Abstract A new portable device for ice-core drilling, specially designed for thin tephra-layer sampling, was tested on the South Shetland glaciers during the 1994-95 Antarctic summer. The machine is based on a combination of the standard paleomagnetism drilling machine and a specially built drill-bit designed for ice-coring.

1998 ◽  
Vol 44 (146) ◽  
pp. 179-181
Author(s):  
J. M. Casas ◽  
F. Sàbat ◽  
J. M. Vilaplana ◽  
J. M. Parés ◽  
D. M. Pomeroy

AbstractA new portable device for ice-core drilling, specially designed for thin tephra-layer sampling, was tested on the South Shetland glaciers during the 1994-95 Antarctic summer. The machine is based on a combination of the standard paleomagnetism drilling machine and a specially built drill-bit designed for ice-coring.


2019 ◽  
Vol 65 (254) ◽  
pp. 1011-1022 ◽  
Author(s):  
Pinlu Cao ◽  
Qi Zhao ◽  
Zhuo Chen ◽  
Hongyu Cao ◽  
Baoyi Chen

AbstractA new type of ice core drill bit, designed with a vane swirler, was developed for ice core drilling with air reverse circulation. An orthogonal experimental design method was employed to investigate the effects of the swirler structure parameters on the reverse circulation performance of the drill bit including helical angle, number of blades, blade length and blade central angle, etc. The entrainment ratio was used to evaluate the reverse circulation effectiveness of the drill bit. The results show that the helical angle is the dominant factor regardless of whether or not the flushing nozzles are part of the design of the drill bit. The number of blades is the least important factor for the drill bit designed with the flushing nozzles (referred to as drill bit I), while the outlet area of the swirling slot is the least influential factor for the drill bit without flushing nozzles (referred to as drill bit П). In addition, the appearance of the ice core has a certain effect on the air reverse circulation for both drill bits. Within the ranges of this study, the optimal structure of the drill bit was determined based on the range analysis of the orthogonal design.


2006 ◽  
Vol 111 (D16) ◽  
Author(s):  
John C. Moore ◽  
Fumihiko Nishio ◽  
Shuji Fujita ◽  
Hideki Narita ◽  
Elizabeth Pasteur ◽  
...  
Keyword(s):  
Ice Core ◽  

2000 ◽  
Vol 46 (153) ◽  
pp. 341-345 ◽  
Author(s):  
H. Engelhardt ◽  
B. Kamb ◽  
R. Bolsey

AbstractA new method of ice-core drilling uses an annulus of hot-water jets to melt out a cylindrical ice core. This lightweight device used in combination with a fast hot-water drill can quickly obtain ice cores from any depth.


2007 ◽  
Vol 47 ◽  
pp. 115-124 ◽  
Author(s):  
Robert Mulvaney ◽  
Olivier Alemany ◽  
Philippe Possenti

AbstractWe describe a project to retrieve a 948m deep ice core from Berkner Island, Antarctica. Using relatively lightweight logistics and a small team, the drilling operation over three austral summer seasons used electromechanical drilling technology, described in detail, from a covered shallow pit and a fluid-filled borehole. A basal temperature well below pressure-melting point meant that no drilling problems were encountered when approaching the bed and the borehole penetrated through to the base of the ice sheet, and sediment was retrieved from beneath the ice.


2014 ◽  
Vol 55 (68) ◽  
pp. 339-350 ◽  
Author(s):  
P.G. Talalay

AbstractMore than 170 years ago, Louis Agassiz, one of the creators of glacial theory, made his first attempt to drill into the bed of Unteraargletscher, Swiss Alps. Since that time, various systems for thermal and mechanical drilling have been designed especially for boring into ice, and some conventional drill rigs been adopted for ice coring. Although contemporary ice-drilling knowledge and techniques are now familiar, there remain many problems to be solved by advanced modern technology. Specific challenges related to improving old drilling methods and developing new emerging technologies include: (1) identification of depth limitation of ‘dry’ drilling; (2) improvement of casing; (3) searching for the new environmentally friendly low-temperature drilling fluids; (4) reliable elimination of sticking drills; (5) improvement of core quality in the brittle zone; (6) additional core sampling from borehole walls after the core has been drilled; (7) obtaining oriented core; (8) designing automation drilling systems; (9) developing rapid-access drills. Possible ways of solving these problems are presented below.


Polar Science ◽  
2018 ◽  
Vol 17 ◽  
pp. 23-32 ◽  
Author(s):  
Pinlu Cao ◽  
Miaomiao Liu ◽  
Zhuo Chen ◽  
Baoyi Chen ◽  
Qi Zhao

2007 ◽  
Vol 46 ◽  
pp. 204-208 ◽  
Author(s):  
Donghui Shangguan ◽  
Shiyin Liu ◽  
Yongjian Ding ◽  
Jing Li ◽  
Yong Zhang ◽  
...  

AbstractRecent studies have indicated that widespread wastage of glaciers in western China has occurred since the late 1970s. By using digitized glacier outlines derived from the 1970 inventory and Landsat satellite data from 1990/91 to 2001, we obtained area changes of about 278 glaciers with a total area of 2711.57 km2 in the heavily glaciated west Kunlun Shan (WKS) in the northern Tibetan Plateau (TP). Results indicate that the prevailing characteristic of glacier variation is ice wastage, and glacier area decreased by 10 km2 (0.4% of the total 1970 area) between 1970 and 2001. Both the south and north slopes of the WKS presented shrinkage during 1970–2001, but whereas on the north slope a slight enlargement of ice extent during 1970–90 was followed by a reduction of 0.2% during 1990–2001, on the south slope the glacier area decreased by 1.2% during 1970–91, with a small increment of 0.6% during 1991–2001. Comparisons with other glaciated mountainous regions in western China show that glaciers in the research area have experienced less retreat. Based on records from the Guliya ice core, we believe that an increase in air temperature was the main forcing factor for glacier shrinkage during 1970–2001.


2020 ◽  
Vol 61 (81) ◽  
pp. 84-91 ◽  
Author(s):  
T. M. Jordan ◽  
D. Z. Besson ◽  
I. Kravchenko ◽  
U. Latif ◽  
B. Madison ◽  
...  

AbstractThe Askaryan Radio Array (ARA) experiment at the South Pole is designed to detect high-energy neutrinos which, via in-ice interactions, produce coherent radiation at frequencies up to 1000 MHz. Characterization of ice birefringence, and its effect upon wave polarization, is proposed to enable range estimation to a neutrino interaction and hence aid in neutrino energy reconstruction. Using radio transmitter calibration sources, the ARA collaboration recently measured polarization-dependent time delay variations and reported significant time delays for trajectories perpendicular to ice flow, but not parallel. To explain these observations, and assess the capability for range estimation, we use fabric data from the SPICE ice core to model ice birefringence and construct a bounding radio propagation model that predicts polarization time delays. We compare the model with new data from December 2018 and demonstrate that the measurements are consistent with the prevailing horizontal crystallographic axis aligned near-perpendicular to ice flow. The study supports the notion that range estimation can be performed for near flow-perpendicular trajectories, although tighter constraints on fabric orientation are desirable for improving the accuracy of estimates.


Sign in / Sign up

Export Citation Format

Share Document