scholarly journals Winter Sea-ice mapping from multi-parameter synthetic-aperture radar data

1994 ◽  
Vol 40 (134) ◽  
pp. 31-45 ◽  
Author(s):  
Eric Rignot ◽  
Mark R. Drinkwater

AbstractThe limitations of current and immediate future single-frequency, single-polarization, space-borne SARs for winter sea-ice mapping are quantitatively examined, and improvements are suggested by combining frequencies and polarizations. Ice-type maps are generated using multi-channel, air-borne SAR observations of winter sea ice in the Beaufort Sea to identify six ice conditions: (1) multi-year sea ice; (2) compressed first-year ice; (3) first-year rubble and ridges; (4) first-year rough ice; (5) first-year smooth ice; and (6) first-year thin ice. At a single polarization, C- (λ = 5.6 cm) and L- (λ = 24 cm) band frequencies yield a classification accuracy of 67 and 71%, because C-band confuses multi-year ice and compressed, rough, thick first-year ice surrounding multi-year ice floes, and L-band confuses multi-year ice and deformed first-year ice. Combining C- and L-band improves classification accuracy by 20%. Adding a second polarization at one frequency only improves classification accuracy by 10–14% and separates thin ice and calm open water. Under similar winter-ice conditions, ERS-1 (Cvv) and Radarsat (CHH) would overestimate the multi-year ice fraction by 15% but correctly map the spatial variability of ice thickness; J-ERS-1 (LHH) would perform poorly;and J-ERS-1 combined with ERS-1 or Radarsat would yield reliable estimates of the old, thick, first-year and thin-ice fractions, and of the spatial distribution of ridges. With two polarizations, future single-frequency space-borne SARs could improve our current capability to discriminate thinner ice types.

1994 ◽  
Vol 40 (134) ◽  
pp. 31-45 ◽  
Author(s):  
Eric Rignot ◽  
Mark R. Drinkwater

AbstractThe limitations of current and immediate future single-frequency, single-polarization, space-borne SARs for winter sea-ice mapping are quantitatively examined, and improvements are suggested by combining frequencies and polarizations. Ice-type maps are generated using multi-channel, air-borne SAR observations of winter sea ice in the Beaufort Sea to identify six ice conditions: (1) multi-year sea ice; (2) compressed first-year ice; (3) first-year rubble and ridges; (4) first-year rough ice; (5) first-year smooth ice; and (6) first-year thin ice. At a single polarization, C- (λ = 5.6 cm) and L- (λ = 24 cm) band frequencies yield a classification accuracy of 67 and 71%, because C-band confuses multi-year ice and compressed, rough, thick first-year ice surrounding multi-year ice floes, and L-band confuses multi-year ice and deformed first-year ice. Combining C- and L-band improves classification accuracy by 20%. Adding a second polarization at one frequency only improves classification accuracy by 10–14% and separates thin ice and calm open water. Under similar winter-ice conditions, ERS-1 (Cvv) and Radarsat (CHH) would overestimate the multi-year ice fraction by 15% but correctly map the spatial variability of ice thickness; J-ERS-1 (LHH) would perform poorly;and J-ERS-1 combined with ERS-1 or Radarsat would yield reliable estimates of the old, thick, first-year and thin-ice fractions, and of the spatial distribution of ridges. With two polarizations, future single-frequency space-borne SARs could improve our current capability to discriminate thinner ice types.


1975 ◽  
Vol 15 (73) ◽  
pp. 225-239
Author(s):  
S. G. Tooma ◽  
R. A. Mennella ◽  
J. P. Hollinger ◽  
R. D. Ketchum

AbstractDuring December 1973, the Naval Oceanographie Offirc (NAVOCKANO) and the Naval Research Laboratory (NRL) conducted a joint remote-sensing experiment over the sea-ice fields off Scoresby Sound on the east coast of Greenland using NAVOCEANO’s RP3-A Birdseye aircraft, laser profiler, and infrared scanner, and NRL’s 19.34 and 31.0 GHz nadir-looking radiometers. The objectives of this mission were: (1) to develop skills for interpreting sea-ice passive microwave data. (2) to expand, if possible, the two-category capability (multi-year ice and first-year ice) of passive microwave sensors over sea ice, (3) to compare two frequencies (19 and 31 GHz) to determine which may be more useful in a scanning radiometer now under development at NRL, and (4) to determine the value of multi-frequency as compared to single-frequency study of sea ice.Since, because of darkness and remoteness, no photography or in situ ground truth were possible for this mission, it was necessary to rely on the interpretations of the laser and infrared (IR) data to evaluate the performance of the microwave radiometers. Fortunately, excellent laser and IR data were collected, and a confident description of the ice overflown was possible.Five ice conditions: (1) open water/new ice, (2) smooth first-year ice, (3) ridged first-year ice, (4) multi-year ice, and (5) a higher brightness temperature form of multi-year ice interpreted as second-year ice were identifiable, regardless of weather conditions, by comparing the average of the two microwave brightness temperatures at the two frequencies with their difference.


1975 ◽  
Vol 15 (73) ◽  
pp. 225-239 ◽  
Author(s):  
S. G. Tooma ◽  
R. A. Mennella ◽  
J. P. Hollinger ◽  
R. D. Ketchum

Abstract During December 1973, the Naval Oceanographie Offirc (NAVOCKANO) and the Naval Research Laboratory (NRL) conducted a joint remote-sensing experiment over the sea-ice fields off Scoresby Sound on the east coast of Greenland using NAVOCEANO’s RP3-A Birdseye aircraft, laser profiler, and infrared scanner, and NRL’s 19.34 and 31.0 GHz nadir-looking radiometers. The objectives of this mission were: (1) to develop skills for interpreting sea-ice passive microwave data. (2) to expand, if possible, the two-category capability (multi-year ice and first-year ice) of passive microwave sensors over sea ice, (3) to compare two frequencies (19 and 31 GHz) to determine which may be more useful in a scanning radiometer now under development at NRL, and (4) to determine the value of multi-frequency as compared to single-frequency study of sea ice. Since, because of darkness and remoteness, no photography or in situ ground truth were possible for this mission, it was necessary to rely on the interpretations of the laser and infrared (IR) data to evaluate the performance of the microwave radiometers. Fortunately, excellent laser and IR data were collected, and a confident description of the ice overflown was possible. Five ice conditions: (1) open water/new ice, (2) smooth first-year ice, (3) ridged first-year ice, (4) multi-year ice, and (5) a higher brightness temperature form of multi-year ice interpreted as second-year ice were identifiable, regardless of weather conditions, by comparing the average of the two microwave brightness temperatures at the two frequencies with their difference.


1987 ◽  
Vol 9 ◽  
pp. 247-247
Author(s):  
Benjamin Holt ◽  
F.D. Carsey

The ability to distinguish the several major types of sea ice with active radar instruments has been well studied in recent years. The separation of sea-ice types by radar results principally from variations in radar back-scatter due to characteristic differences of these ice types in surface morphology and brine content. When sea ice is viewed with an active radar at angles greater than about 20° from nadir, undeformed ice reflects radar waves and results in a low return, while ridges, hummocks, and small-scale surface features scatter the radar waves and produce a high return. The presence of salt increases the dielectric constant of ice; penetration by radar into the ice is then negligible, and the return is essentially determined by surface morphology. The absence of salt reduces the dielectric properties of ice; radar waves can then penetrate the ice to some depth and are scattered by air bubbles and brine-drainage channels (called volume scattering), thereby enhancing the return even for roughened surfaces. All these properties vary significantly with radar frequency and polarization as well as seasonally. For example, higher radar frequencies respond to smaller-scale surface features, while lower radar frequencies penetrate further into the ice with resulting volume scattering.The high-resolution imagery from synthetic aperture radars (SAR), mounted on aircraft, shuttle, or satellite platforms, is very effective for many sea-ice studies, including the separation of ice types. An aircraft-mounted X-band (9 GHz) SAR, for example, can discriminate smooth first-year ice, rough first-year ice, multi-year ice, and open water by the intensity (tone) of the radar returns and floe geometry. The preferred SARs to date for satellites and shuttle platforms have been L-band (1–2 GHz) systems. SAR imagery of sea ice was extensively acquired by Seasat in 1978 over the Beaufort Sea, with limited quantities obtained by the Shuttle Imaging Radar (SIR-B) over the Weddell Sea in 1984. While L-band SAR can discriminate rough and smooth ice along with roughened open water based on image intensity and floe geometry, the returns from thick first-year ice and multi-year ice are not clearly distinguishable. The fact that there is volume scattering from multi-year ice suggests that there may be textural or spatial frequency variations that could be used to separate these two major ice types in radar imagery. In order to investigate the separation of sea-ice types in the large amount of L-band SAR imagery available, image-analysis techniques including filtering and classification programs have been utilized, pointing towards an automatic classification algorithm for use in future SAR sea-ice data sets, especially from space.An important characteristic of all SAR imagery is the presence of image speckle, a coherent form of noise caused by the random variability of scatterers across even a uniform surface. Most SAR processors reduce this effect by averaging multiple independent samples but this is done at the cost of reducing resolution. Speckle reduction can also be accomplished by filtering. Several filters have been tested including median, box, and adaptive edge filters. Each filter has different characteristics in terms of smoothing speckle and in the response to sharp gradients or edges, such as ridge or lead openings, as well as computational requirements. Optimization of each filter’s parameters has been determined by the quality of classification of each ice type.The classification programs that have been tested are based on tone and texture image characteristics. The programs are supervised; that is, a small training area for each class is pre-selected for statistical analysis. From these statistics, the remainder of the imagery is subjected to the particular classification algorithm. The tone program separates classes based on the mean, standard deviation, and number of standard deviations of each class, and includes a Bayesian maximum-likelihood classifier for ambiguous elements. The texture program determines the statistical homogeneity of each class and the optimal segmentation of each small area into the various classes.


1987 ◽  
Vol 9 ◽  
pp. 247
Author(s):  
Benjamin Holt ◽  
F.D. Carsey

The ability to distinguish the several major types of sea ice with active radar instruments has been well studied in recent years. The separation of sea-ice types by radar results principally from variations in radar back-scatter due to characteristic differences of these ice types in surface morphology and brine content. When sea ice is viewed with an active radar at angles greater than about 20° from nadir, undeformed ice reflects radar waves and results in a low return, while ridges, hummocks, and small-scale surface features scatter the radar waves and produce a high return. The presence of salt increases the dielectric constant of ice; penetration by radar into the ice is then negligible, and the return is essentially determined by surface morphology. The absence of salt reduces the dielectric properties of ice; radar waves can then penetrate the ice to some depth and are scattered by air bubbles and brine-drainage channels (called volume scattering), thereby enhancing the return even for roughened surfaces. All these properties vary significantly with radar frequency and polarization as well as seasonally. For example, higher radar frequencies respond to smaller-scale surface features, while lower radar frequencies penetrate further into the ice with resulting volume scattering. The high-resolution imagery from synthetic aperture radars (SAR), mounted on aircraft, shuttle, or satellite platforms, is very effective for many sea-ice studies, including the separation of ice types. An aircraft-mounted X-band (9 GHz) SAR, for example, can discriminate smooth first-year ice, rough first-year ice, multi-year ice, and open water by the intensity (tone) of the radar returns and floe geometry. The preferred SARs to date for satellites and shuttle platforms have been L-band (1–2 GHz) systems. SAR imagery of sea ice was extensively acquired by Seasat in 1978 over the Beaufort Sea, with limited quantities obtained by the Shuttle Imaging Radar (SIR-B) over the Weddell Sea in 1984. While L-band SAR can discriminate rough and smooth ice along with roughened open water based on image intensity and floe geometry, the returns from thick first-year ice and multi-year ice are not clearly distinguishable. The fact that there is volume scattering from multi-year ice suggests that there may be textural or spatial frequency variations that could be used to separate these two major ice types in radar imagery. In order to investigate the separation of sea-ice types in the large amount of L-band SAR imagery available, image-analysis techniques including filtering and classification programs have been utilized, pointing towards an automatic classification algorithm for use in future SAR sea-ice data sets, especially from space. An important characteristic of all SAR imagery is the presence of image speckle, a coherent form of noise caused by the random variability of scatterers across even a uniform surface. Most SAR processors reduce this effect by averaging multiple independent samples but this is done at the cost of reducing resolution. Speckle reduction can also be accomplished by filtering. Several filters have been tested including median, box, and adaptive edge filters. Each filter has different characteristics in terms of smoothing speckle and in the response to sharp gradients or edges, such as ridge or lead openings, as well as computational requirements. Optimization of each filter’s parameters has been determined by the quality of classification of each ice type. The classification programs that have been tested are based on tone and texture image characteristics. The programs are supervised; that is, a small training area for each class is pre-selected for statistical analysis. From these statistics, the remainder of the imagery is subjected to the particular classification algorithm. The tone program separates classes based on the mean, standard deviation, and number of standard deviations of each class, and includes a Bayesian maximum-likelihood classifier for ambiguous elements. The texture program determines the statistical homogeneity of each class and the optimal segmentation of each small area into the various classes.


2021 ◽  
Vol 13 (9) ◽  
pp. 1753
Author(s):  
Johnson Bailey ◽  
Armando Marino ◽  
Vahid Akbari

Icebergs represent hazards to ships and maritime activities and therefore their detection is essential. Synthetic Aperture Radar (SAR) satellites are very useful for this, due to their capability to acquire data under cloud cover and during day and night passes. In this work, we compared six state-of-the-art polarimetric target detectors to test their performance and ability to detect small-sized icebergs <120 m in four locations in Greenland. We used four single-look complex (SLC) ALOS-2 quad-polarimetric images from JAXA for quad-polarimetric detection and we compared with dual-polarimetric detectors using only the channels HH and HV. We also compared these detectors with single-polarimetric intensity channels and we tested using two scenarios: open ocean and sea ice. Our results show that the multi-look polarimetric whitening filter (MPWF) and the optimal polarimetric detector (OPD) provide the most optimal performance in quad- and dual-polarimetric mode detection. The analysis shows that, overall, quad-polarimetric detectors provide the best detection performance. When the false alarm rate (PF) is fixed to 10-5, the probabilities of detection (PD) are 0.99 in open ocean and 0.90 in sea ice. Dual-polarimetric or single-polarimetric detectors show an overall reduction in performance (the ROC curves show a decrease), but this degradation is not very large (<0.1) when the value of false alarms is relatively high (i.e., we are interested in bigger icebergs with a brighter backscattering >120 m, as they are easier to detect). However, the differences between quad- and dual- or single-polarimetric detectors became much more evident when the PF value was fixed to low detection probabilities 10-6 (i.e., smaller icebergs). In the single-polarimetric mode, the HV channel showed PD values of 0.62 for open ocean and 0.26 for sea ice, compared to values of 0.81 (open ocean) and 0.77 (sea ice) obtained with quad-polarimetric detectors.


2013 ◽  
Vol 54 (62) ◽  
pp. 59-64 ◽  
Author(s):  
K. Shirasawa ◽  
N. Ebuchi ◽  
M. Leppäranta ◽  
T. Takatsuka

AbstractA C-band sea-ice radar (SIR) network system was operated to monitor the sea-ice conditions off the Okhotsk Sea coast of northern Hokkaido, Japan, from 1969 to 2004. The system was based on three radar stations, which were capable of continuously monitoring the sea surface as far as 60 km offshore along a 250 km long coastal section. In 2004 the SIR system was closed down and a sea surface monitoring programme was commenced using high-frequency (HF) radar; this system provides information on surface currents in open-water conditions, while areas with ‘no signal’ can be identified as sea ice. The present study compares HF radar data with SIR data to evaluate their feasibility for sea-ice remote sensing. The period of overlapping data was 1.5 months. The results show that HF radar information can be utilized for ice-edge mapping although it cannot fully compensate for the loss of the SIR system. In particular, HF radar does not provide ice concentration, ice roughness and geometrical structures or ice kinematics. The probability of ice-edge detection by HF radar was 0.9 and the correlation of the ice-edge distance between the radars was 0.7.


Sign in / Sign up

Export Citation Format

Share Document