basal friction
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 33)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Alexander O. Hager ◽  
Matthew J. Hoffman ◽  
Stephen F. Price ◽  
Dustin M. Schroeder

Abstract. Subglacial hydrology is a leading control on basal friction and the dynamics of glaciers and ice sheets. At low discharge, subglacial water flows through high-pressure, sheet-like systems that lead to low effective pressures. However, at high discharge, subglacial water melts the overlying ice into localized channels that efficiently remove water from the bed, thereby increasing effective pressure and basal friction. Recent observations suggest channelized subglacial flow exists beneath Thwaites Glacier, yet it remains unclear if stable channelization is feasible in West Antarctica, where surface melting is nonexistent and water at the bed is limited. Here, we use the MPAS-Albany Land Ice model to run a suite of over 130 subglacial hydrology simulations of Thwaites Glacier across a wide range of physical parameter choices to assess the likelihood of channelization. We then narrow our range of viable simulations by comparing modeled water thicknesses to previously observed radar specularity content, which indicates flat, spatially extensive water bodies at the bed. In all of our data-compatible simulations, stable channels reliably form within 100–200 km of the grounding line, and reach individual discharge rates of 35–110 m3 s−1 at the ice-ocean boundary. While only one to two channels typically form across the 200 km width of the glacier in our simulations, their high efficiency drains water across the entire lateral extent of the glacier. No simulations resembled observed specularity content when channelization is disabled. Our results suggest channelized subglacial hydrology has two consequences for Thwaites Glacier dynamics: (i) amplifying submarine melting of the terminus and ice shelf, while (ii) simultaneously raising effective pressure within 100 km of the grounding line and increasing basal friction. The distribution of effective pressure implied from our modeling differs from parameterizations typically used in large-scale ice sheet models, suggesting the development of more process-based parameterizations may be necessary.


2021 ◽  
pp. 1-17
Author(s):  
Nicholas M. Rathmann ◽  
David A. Lilien

We investigate the errors caused by neglecting the crystal-orientation fabric when inferring the basal friction coefficient field, and whether such errors can be alleviated by inferring an isotropic enhancement factor field to compensate for missing fabric information. We calculate the steady states that arise from ice flowing over a sticky spot and a bedrock bump using a vertical-slab numerical ice-flow model, consisting of a Weertman sliding law and the anisotropic Johnson flow law, coupled to a spectral fabric model of lattice rotation and dynamic recrystallisation. Given the steady or transient states as input for a canonical adjoint-based inversion, we find that Glen's isotropic flow law cannot necessarily be used to infer the true basal drag or friction coefficient field, which are obscured by the orientation fabric, thus potentially affecting vertically integrated mass fluxes. By inverting for an equivalent isotropic enhancement factor, a more accurate mass flux can be recovered, suggesting that joint inversions for basal friction and the isotropic flow-rate factor may be able to compensate for mechanical anisotropies caused by the fabric. Thus, in addition to other sources of rheological uncertainty, fabric might complicate attempts to relate subglacial conditions to basal properties inferred from an inversion relying on Glen's law.


2021 ◽  
Vol 15 (7) ◽  
pp. 3229-3253
Author(s):  
Gunter R. Leguy ◽  
William H. Lipscomb ◽  
Xylar S. Asay-Davis

Abstract. Ice sheet models differ in their numerical treatment of dynamical processes. Simulations of marine-based ice are sensitive to the choice of Stokes flow approximation and basal friction law and to the treatment of stresses and melt rates near the grounding line. We study the effects of these numerical choices on marine ice sheet dynamics in the Community Ice Sheet Model (CISM). In the framework of the Marine Ice Sheet Model Intercomparison Project 3d (MISMIP3d), we show that a depth-integrated, higher-order solver gives results similar to a 3D (Blatter–Pattyn) solver. We confirm that using a grounding line parameterization to approximate stresses in the grounding zone leads to accurate representation of ice sheet flow with a resolution of ∼2 km, as opposed to ∼0.5 km without the parameterization. In the MISMIP+ experimental framework, we compare different treatments of sub-shelf melting near the grounding line. In contrast to recent studies arguing that melting should not be applied in partly grounded cells, it is usually beneficial in CISM simulations to apply some melting in these cells. This suggests that the optimal treatment of melting near the grounding line can depend on ice sheet geometry, forcing, or model numerics. In both experimental frameworks, ice flow is sensitive to the choice of basal friction law. To study this sensitivity, we evaluate friction laws that vary the connectivity between the basal hydrological system and the ocean near the grounding line. CISM yields accurate results in steady-state and perturbation experiments at a resolution of ∼2 km (arguably 4 km) when the connectivity is low or moderate and ∼1 km (arguably 2 km) when the connectivity is strong.


2021 ◽  
Vol 9 (3) ◽  
pp. 665-672
Author(s):  
Øystein T. Haug ◽  
Matthias Rosenau ◽  
Michael Rudolf ◽  
Karen Leever ◽  
Onno Oncken

Abstract. Rock avalanches produce exceptionally long run-outs that correlate with their rock volume. This relationship has been attributed to the size-dependent dynamic lowering of the effective basal friction. However, it has also been observed that run-outs of rock avalanches with similar volumes can span several orders of magnitude, suggesting additional controlling factors. Here, we analyse analogue models of rock avalanches, with the experiments designed to test the role of dynamic fragmentation. We show that for a fixed low basal friction, the run-out of experimental rock avalanches varies over 2 orders of magnitude and is determined by their degree of fragmentation, while the basal friction acts only as an upper limit on run-out. We interpret the run-out's dependence on fragmentation as being controlled by the competition between mobility enhancing spreading and energy-consuming fragmentation limited by basal friction. We formalize this competition into a scaling law based on energy conservation, which shows that the variation in the degree of fragmentation can contribute to the large variation in run-out of rock avalanches seen in nature.


2021 ◽  
Author(s):  
Gunter Leguy ◽  
William Lipscomb ◽  
Xylar Asay-Davis

<p>Ice sheet models differ in their numerical treatment of dynamical processes. Simulations of marine-based ice are sensitive to the choice of Stokes flow approximation and basal friction law, and to the treatment of stresses and melt rates near the grounding line. We present the effects of these numerical choices on marine ice-sheet dynamics in the Community Ice Sheet Model (CISM). In the experimental framework of the Marine Ice Sheet Model Intercomparison Project (MISMIP+), we compare different treatments of sub-shelf melting near the grounding line. In contrast to recent studies arguing that melting should not be applied in partly grounded cells, it is usually beneficial in CISM simulations to apply some melting in these cells. This suggests that the optimal treatment of melting near the grounding line can depend on ice-sheet geometry, forcing, or model numerics. In the MISMIP+ framework, the ice flow is also sensitive to the choice of basal friction law. To study this sensitivity, we evaluate friction laws that vary the connectivity between the basal hydrological system and the ocean near the grounding line. CISM yields accurate results in steady-state and perturbation experiments at a resolution of ∼2 km (arguably 4 km) when the connectivity is low or moderate, and ∼1 km (arguably 2 km) when the connectivity is strong.</p>


2021 ◽  
Author(s):  
Eleanor Tennant ◽  
Susanna Jenkins ◽  
Annie Winson ◽  
Christina Widiwijayanti ◽  
Hendra Gunawan ◽  
...  

<p>Understanding past eruption dynamics at a volcano is crucial for forecasting the range of possible future eruptions and their associated hazards and risk. In this work we reconstructed pyroclastic density currents and tephra fall from three eruptions at Gede volcano, Indonesia with the aim of gaining further insight into past eruptions and identifying suitable eruption source parameters for future hazard and risk assessment. Gede has the largest number of people living within 100 km of any volcano worldwide, and has exhibited recent unrest activity, yet little is known about its eruption history. For pyroclastic density currents, we used Titan2D to reconstruct geological deposits dated at 1200 and c. 1000 years BP. An objective and quantitative multi-criteria method was developed to evaluate the fit of over 300 pyroclastic density current (PDC) model simulations to field observations. We found that the 1200 years BP geological deposits could be reproduced with either a dome collapse or column collapse as the generation mechanism although a relatively low basal friction of 6 degrees would suggest that the PDCs were markedly mobile. Lower basal frictions may reflect the occurrence of previous PDCs that smoothed the path, reducing frictional resistance and enabling greater runout for the reconstructed unit. For the 1,000 years BP PDC, a column collapse mechanism and higher basal friction was required to fit the geological deposits. In agreement with previous studies, we found that Titan2D simulations were most sensitive to the basal friction; however, we also found that the internal friction – often fixed and considered of low influence on outputs - can have a moderate effect on the simulated average deposit thickness. We used Tephra2 to reconstruct historic observations of tephra dispersed to Jakarta and other towns during the last known magmatic eruption of Gede in 1948. In the absence of observable field deposits, or detailed information from the published literature, we stochastically sampled eruption source parameters from wide ranges informed by analogous volcanic systems. Our modelling suggests that the deposition of tephra in Jakarta during the November 1948 eruption was a very low probability event, with approximately a 0.03 % chance of occurrence. Through this work, we exemplify the reconstruction of past eruptions when faced with epistemic uncertainty, and improve our understanding of past eruption dynamics at Gede volcano, providing a crucial step towards the reduction of risk to nearby populations through volcanic hazard assessment.</p>


2021 ◽  
Author(s):  
William Lipscomb ◽  
Gunter Leguy ◽  
Nicolas Jourdain ◽  
Xylar Asay-Davis ◽  
Hélène Seroussi ◽  
...  

<p>The future retreat rate for marine-based regions of the Antarctic Ice Sheet is one of the largest uncertainties in sea-level projections. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) aims to improve projections and quantify uncertainties by running an ensemble of ice sheet models with forcing derived from global climate models. Here, the Community Ice Sheet Model (CISM) is used to run ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution. Using several combinations of sub-ice-shelf melt schemes, CISM is spun up to steady state over many millennia. During the spin-up, basal-friction and thermal-forcing parameters are adjusted to optimize agreement with the observed ice thickness. The model is then run forward to year 2500, applying ocean thermal forcing anomalies from six climate models. In all simulations, ocean warming triggers long-term retreat of the West Antarctic Ice Sheet, especially in the Filchner-Ronne and Ross sectors. The ocean-forced sea-level rise in 2500 varies from about 150 mm to 1300 mm, depending on the melt scheme and ocean forcing applied. Further experiments show relatively high sensitivity to the basal friction law, and moderate sensitivity to grid resolution and the prescribed collapse of small ice shelves. The Amundsen sector exhibits threshold behavior, with modest retreat under many parameter settings, but complete collapse under some combinations of low basal friction and high thermal-forcing anomalies. Large uncertainties remain, as a result of parameterized sub-shelf melt rates, simplified treatments of calving and basal friction, and the lack of ice–ocean coupling.</p>


2021 ◽  
Author(s):  
Xylar Asay-Davis ◽  
Christopher Y. S. Bull ◽  
Stephen Cornford ◽  
Eva Cougnon ◽  
Jan De Rydt ◽  
...  

<p>The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort sponsored by the Climate and Cryosphere (CliC) project.  MISOMIP aims to design and coordinate a series of MIPs—some idealized and realistic—for model evaluation, verification with observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS).  The first phase of the project, MISOMIP1, was an idealized, coupled set of experiments that combined elements from the MISMIP+ and ISOMIP+ standalone experiments for ice-sheet and ocean models, respectively.  These MIPs had 3 main goals: 1) to provide simplified experiments that allow model developers to compare their results with those from other models; 2) to suggest a path for testing components in the process of developing a coupled ice sheet-ocean model; and 3) to enable a large variety of parameter and process studies that branch off from these basic experiments.</p><p>Here, we describe preliminary analysis of the MISOMIP1 results.  Eight models in 14 configurations participated in the MIP.   In keeping with analysis of the MISMIP+ experiment, we find that the choice of basal friction parameterizations in the ice-sheet component (Weertman vs. Coulomb limited) has a particularly significant impact on the rate of ice-sheet retreat but the choice of stress approximation (SSA, SSA* or L1Lx) seems to have little impact.  Models with Coulomb-limited basal friction also tend to be those with the highest melt rates, confirming a positive feedback between melt and retreat in the MISOMIP1 configuration seen in previous work.  The ocean component’s treatment of the boundary layer below the ice shelf also has a significant impact on melt rates and resulting retreat, consistent with findings based on ISOMIP+.  Feedbacks between the components lead to localized features in the melt rates and the ice geometry not seen in standalone simulations, though the ~2-km horizontal and ~20-m vertical resolution of these simulations appears to be too coarse to produce long-lived, sub-ice-shelf channels seen at higher resolution.</p>


2021 ◽  
Author(s):  
Daniel Moreno ◽  
Jorge Alvarez-Solas ◽  
Alexander Robinson ◽  
Javier Blasco ◽  
Ilaria Tabone ◽  
...  

<p>The climate during the last glacial period was far from stable. Evidence has shown the presence of layers of ice-rafted debris (IRD) in deep-sea sediments, which have been interpreted to reflect quasi-periodic episodes of massive iceberg calving from the Laurentide Ice Sheet (LIS). Several mechanisms have been proposed, yet the ultimate cause of these events is still under debate. From the point of view of ice dynamics, one of the main sources of uncertainty and diversity in model response is the choice of basal friction law. Therefore, it is essential to determine the impact of basal friction in glacial transport and erosion, deposition of sediments and ice streams. Here we study the effect of a wide range of basal friction parameters and laws under glacial conditions over the LIS by running ensembles of simulations using a higher-order ice-sheet model. Importantly, the potential feedbacks between basal hydrology and thermodynamics are also considered to shed light on the behaviour of the ice flow. Our aim is to determine under what conditions, if any, physically-based oscillations are possible in the LIS with constant boundary conditions. Increasing our understanding of both basal friction laws and basal hydrology will improve not only reconstructions of paleo ice dynamics but also help to constrain the potential future evolution of current ice sheets.</p>


2021 ◽  
Author(s):  
James Glover ◽  
Sebastian Althoff ◽  
Max Witek ◽  
Christine Seupel ◽  
Seraina Braun ◽  
...  

<p>Gliding snow avalanches are of growing concern for the management of ski areas, transport corridors and spatial planning. With a warming climate there appear to be increasing reports of gliding snow hazards in alpine regions. The management of gliding snow avalanches can be achieved through either stabilization or artificially triggering a slide. Triggering sliding is attractive because it has the potential to remove the hazard entirely. In this research, we investigate the potential of managing gliding snow avalanches through the early release of snow accumulations using low friction geotextiles.</p><p>A series of geotextiles have been installed on slopes between 25 and 35° during the autumn months and the behavior of snow accumulations observed during the winter. Initial findings indicate that reducing the basal friction can be effective in inducing early release of gliding snow avalanches. However, the interaction of the flanking snow pack and stauchwall appear dominant in the behavior of the system. This contribution reports on the initial findings of these experiments and discusses the potential applications to managing gliding snow avalanches.  </p>


Sign in / Sign up

Export Citation Format

Share Document