scholarly journals The Creep of Ice Shelves Theory

1973 ◽  
Vol 12 (64) ◽  
pp. 45-53 ◽  
Author(s):  
R. H. Thomas

AbstractBudd’s expressions for strain-rate gradient along the centre line of a bounded ice shelf are shown to be applicable only to ice shelves with almost constant thickness and very small longitudinal strain-rates. A general expression is derived for creep in an ice shelf where the sole restriction is that of zero shear stresses in vertical planes. This is applied to the two special cases:(1)movement of an ice shelf restricted in at least one direction by sea-water pressure only;(2)movement of an ice shelf flowing between roughly parallel sides.

1973 ◽  
Vol 12 (64) ◽  
pp. 45-53 ◽  
Author(s):  
R. H. Thomas

AbstractBudd’s expressions for strain-rate gradient along the centre line of a bounded ice shelf are shown to be applicable only to ice shelves with almost constant thickness and very small longitudinal strain-rates. A general expression is derived for creep in an ice shelf where the sole restriction is that of zero shear stresses in vertical planes. This is applied to the two special cases: (1)movement of an ice shelf restricted in at least one direction by sea-water pressure only;(2)movement of an ice shelf flowing between roughly parallel sides.


1980 ◽  
Vol 1 ◽  
pp. 37-41 ◽  
Author(s):  
D. V. Reddy ◽  
W. Bobby ◽  
M. Arockiasamy ◽  
R. T. Dempster

Calving of floating ice shelves is studied by a viscoelastic finite-element analysis. The fan-shaped breaking-up of glaciers due to forces that cause bending on creeping ice is assumed to be axisymmetric. Bending may be due to geometry of the bcdrock, action of tides and waves, and imbalance (at the ice front) between the stress in the ice and the sea-water pressure.The bulk and shear moduli of the ice are represented by relaxation functions of the Prony series, which is a discrete relaxation spectrum composed of a constant and a summation of exponential terms. These properties are also functions of temperature, that varies over the thickness of the ice shelf. The temperature distribution across the thickness of the ice is obtained from calculations based on a linear dependence of thermal conductivity on the temperature. Numerical results are presented for various calving mechanisms. A computer code, VISIC1, is developed by modifying a finite-element viscoelastic code, VISICE, for floating ice islands. The buoyancy of the water is taken into account by a Winkler spring model, with the spring force determined from displaced volume. Locations of crack initiation obtained from the analysis are used to predict the iceberg size immediately after calving.


1990 ◽  
Vol 14 ◽  
pp. 341
Author(s):  
A. Jenkins ◽  
C.S.M. Doake

A detailed glaciological study of Ronne Ice Shelf has been undertaken along a flowline extending from Rutford Ice Stream grounding line to the ice front. Measurements of velocity, surface elevation, ice thickness, surface temperature and accumulation rate have been made at a total of 28 sites; at 17 of these ice deformation rates are also known. Although no direct measurements of basal conditions have been made, these can be deduced from observations made at the surface. Assuming the ice shelf to be in a steady state, the basal mass balance can be calculated at points where strain-rates are known. Information on the spatial distribution of basal saline ice layers can also be obtained from radio-echo sounding data. The derived pattern of basal melting and freezing influences both the ice shelf and the underlying ocean. Vertical heat advection modifies the temperature distribution within the ice shelf, which determines its dynamic response to driving and restraining forces through the temperature-dependent ice-flow law. Using measured strain-rates and calculated temperature profiles, the restraint generated by horizontal shear stresses can be derived for points on the flowline. It is the cumulative effect of these forces which controls the discharge of grounded ice from Rutford Ice Stream. Cooling of sea-water to its pressure melting point by melting of ice at depth has two important results. The outflow of cold, dense Ice Shelf Water, produced by this mechanism, is a major source of Antarctic Bottom Water, formed as it mixes at depth with the warmer waters of the Weddell Sea (Foldvik and Gammelsrod, 1988). If the cold water is forced up to shallower depths, frazil ice will be produced as the pressure freezing point rises, resulting in basal accretion if this occurs beneath the ice shelf.


1960 ◽  
Vol 3 (27) ◽  
pp. 626-645 ◽  
Author(s):  
H. Wexler

Abstract Based on an observed temperature profile through the Ross Ice Shelf at Little America and partial profiles in the Maudheim Is-shelf and the Filchner Ice Shelf near the Ellsworth I.G.Y. station, various models of heating with and without melting from below are analysed to find the residence time of the respective ice shelves over the ocean. Estimated movements are compared with observed shelf movements seaward. 100 and 200 yr. melting rates for an ice shelf initially 20.5° C. below the freezing point of seawater are found as functions of the deviation of sea-water from its freezing point and the eddy conductivity of the ocean below the ice shelf. Steady-state solutions based on constant accumulation and sinking in an ice shelf of constant thickness are discussed. The effect of heating of an ice shelf from above and below as it moves to a warmer atmospheric environment is described and it is concluded that the decreasing temperature with depth found only in the Ellsworth ice is a result of its rapid motion from the cold region to the south-east of the station (Coats Land).


1990 ◽  
Vol 14 ◽  
pp. 341-341
Author(s):  
A. Jenkins ◽  
C.S.M. Doake

A detailed glaciological study of Ronne Ice Shelf has been undertaken along a flowline extending from Rutford Ice Stream grounding line to the ice front. Measurements of velocity, surface elevation, ice thickness, surface temperature and accumulation rate have been made at a total of 28 sites; at 17 of these ice deformation rates are also known. Although no direct measurements of basal conditions have been made, these can be deduced from observations made at the surface. Assuming the ice shelf to be in a steady state, the basal mass balance can be calculated at points where strain-rates are known. Information on the spatial distribution of basal saline ice layers can also be obtained from radio-echo sounding data. The derived pattern of basal melting and freezing influences both the ice shelf and the underlying ocean. Vertical heat advection modifies the temperature distribution within the ice shelf, which determines its dynamic response to driving and restraining forces through the temperature-dependent ice-flow law. Using measured strain-rates and calculated temperature profiles, the restraint generated by horizontal shear stresses can be derived for points on the flowline. It is the cumulative effect of these forces which controls the discharge of grounded ice from Rutford Ice Stream. Cooling of sea-water to its pressure melting point by melting of ice at depth has two important results. The outflow of cold, dense Ice Shelf Water, produced by this mechanism, is a major source of Antarctic Bottom Water, formed as it mixes at depth with the warmer waters of the Weddell Sea (Foldvik and Gammelsrod, 1988). If the cold water is forced up to shallower depths, frazil ice will be produced as the pressure freezing point rises, resulting in basal accretion if this occurs beneath the ice shelf.


1960 ◽  
Vol 3 (27) ◽  
pp. 626-645 ◽  
Author(s):  
H. Wexler

AbstractBased on an observed temperature profile through the Ross Ice Shelf at Little America and partial profiles in the Maudheim Is-shelf and the Filchner Ice Shelf near the Ellsworth I.G.Y. station, various models of heating with and without melting from below are analysed to find the residence time of the respective ice shelves over the ocean. Estimated movements are compared with observed shelf movements seaward. 100 and 200 yr. melting rates for an ice shelf initially 20.5° C. below the freezing point of seawater are found as functions of the deviation of sea-water from its freezing point and the eddy conductivity of the ocean below the ice shelf. Steady-state solutions based on constant accumulation and sinking in an ice shelf of constant thickness are discussed.The effect of heating of an ice shelf from above and below as it moves to a warmer atmospheric environment is described and it is concluded that the decreasing temperature with depth found only in the Ellsworth ice is a result of its rapid motion from the cold region to the south-east of the station (Coats Land).


2004 ◽  
Vol 39 ◽  
pp. 557-562 ◽  
Author(s):  
Pedro Skvarca ◽  
Hernán De Angelis ◽  
Andrés F. Zakrajsek

AbstractFollowing the collapse of Larsen A in 1995, about 3200 km2 of Larsen B ice shelf disintegrated in early 2002 during the warmest summer recorded on the northeastern Antarctic Peninsula. Immediately prior to disintegration the last field campaign was carried out on Larsen B. Measurements included surface net mass balance, velocity and strain rate on a longitudinal transect along Crane Glacier flowline and over a remnant section confined within Seal Nunataks that survived the collapse. In addition, an automatic weather station located nearby allowed derivation of melt days relevant to the formation and extent of surface meltwater. Repeated surveys allowed us to detect a significant acceleration in ice-flow velocity and associated increasing strain rates along the longitudinal transect. It may be possible to use this acceleration as a predictor of imminent ice-shelf collapse, applicable to ice shelves subject to similar climatic conditions. Additional information on recent ongoing changes was provided by a visible satellite image acquired in early 2003.


1980 ◽  
Vol 1 ◽  
pp. 55-55
Author(s):  
Sion Shabtaie ◽  
Charles R. Bentley

Recent geophysical and glaciological investigations of the Ross Ice Shelf have revealed many complexities in the ice shelf that can be important factors in iceberg structure. The presence of rift zones, surface and bottom crevasses, corrugations, ridges and troughs, and other features could substantially modify the hydraulics of iceberg towing and lead to disintegration of the berg in the course of transport.The relationships between the elevation above sea-level and total ice thickness for three ice shelves (Ross, Brunt, and McMurdo) are given; from them, expressions for the thickness/freeboard ratios of tabular icebergs calved from these ice shelves are obtained. The relationships obtained from the measured values of surface elevation and ice thickness are in agreement with models derived assuming hydrostatic equilibrium.Areas of brine infiltration into the Ross Ice Shelf have been mapped. Examples of radar profiles in these zones are shown. Absorption from the brine layers results in a poor or absent bottom echo. It is probable that little saline ice exists at the bottom of the Ross Ice Shelf front due to a rapid bottom melting near the ice front, and that the thickness of the saline ice at the bottom of icebergs calving from the Ross Ice Shelf is no more than a few meters, if there is any at all.We have observed many rift zones on the ice shelf by airborne radar techniques, and at one site the bottom and surface topographies of (buried) rift zones have been delineated. These rift zones play an obvious role in iceberg formation and may also affect the dynamics of iceberg transport. Bottom crevasses with different shapes, sizes, and spacings are abundant in ice shelves; probably some are filled with saline ice and others with unfrozen sea-water. Existence of these bottom crevasses could lead to a rapid disintegration of icebergs in the course of transport, as well as increasing the frictional drag at the ice-water boundary.Radar profiles of the ice-shelf barrier at four sites in flow bands of very different characteristics are shown. In some places rifting upstream from the barrier shows regular spacings, suggesting a periodic calving. Differential bottom melting near the barrier causes the icebergs to have an uneven surface and bottom (i.e. dome-shaped).Electrical resistivity soundings on the ice shelf can be applied to estimate the temperature-depth function, and from that the basal mass-balance rate. With some modifications, the technique may also be applied to estimating the basal mass-balance rates of tabular icebergs.


1982 ◽  
Vol 28 (100) ◽  
pp. 413-430 ◽  
Author(s):  
Sion Shabtaie ◽  
Charles R. Bentley

AbstractRecent geophysical and glaciological investigations of the Ross Ice Shelf have revealed many complexities in the ice shelf that can be important factors in iceberg structure. The presence of rift zones, surface and bottom crevasses, corrugations, ridge/troughs, and other features could substantially modify the hydraulics of iceberg towing and lead to disintegration in the course of transport.The relationships between the elevation above sea-level and total ice thickness for three ice shelves (Ross, Brunt, and McMurdo) are given; from them, expressions for the thickness/freeboard ratios of tabular icebergs calved from these ice shelves are obtained. The relationships obtained from the measured values of surface elevation and ice thickness are in agreement with models derived assuming hydrostatic equilibrium.Areas of brine infiltration into the Ross Ice Shelf have been mapped. Examples of radar profiles in these zones are shown. Absorption from the brine layers results in a poor or absent bottom echo. It is probable that little saline ice exists at the bottom of the Ross Ice Shelf front due to a rapid bottom melting near the ice front, and that the thickness of the saline ice at the bottom of icebergs calving from the Ross Ice Shelf is no more than a few meters, if there is any at all.We have observed many rift zones on the ice shelf by airborne radar techniques, and at one site the bottom and surface topographies of (buried) rift zones have been delineated. These rift zones play an obvious role in iceberg formation and may also affect the dynamics of iceberg transport. Bottom crevasses with different shapes, sizes, and spacings are abundant in ice shelves; probably some are filled with saline ice and others with unfrozen sea-water. Existence of these bottom crevasses could lead to a rapid disintegration of icebergs in the course of transport, as well as increasing the frictional drag at the ice-water boundary.Radar profiles of the ice shelf front at four sites in flow bands of very different characteristics are shown. In some places rifting up-stream from the front shows regular spacings, suggesting a periodic calving. Differential bottom melting near the front causes the icebergs to have an uneven surface and bottom (i.e. dome shaped).Electrical resistivity soundings on the ice shelf can be applied to estimate the temperature-depth function, and from that the basal mass-balance rate. With some modifications, the technique may also be applied to estimating the basal mass balance rates of tabular icebergs.


1984 ◽  
Vol 30 (106) ◽  
pp. 289-295 ◽  
Author(s):  
John M. Reynolds ◽  
J. G. Paren

AbstractGeoresistivity soundings have been carried out at four sites in the Antarctic Peninsula. The objective of the work was to investigate the electrical behaviour of ice from an area where substantial melting occurs in summer and from contrasting thermal regimes. Electrical measurements made at three sites along a flow line within George VI Ice Shelf reveal that:(a)the resistivity of deep ice is similar to that of other Antarctic ice shelves,(b)the resistivity of the ice-shelf surface, which is affected by the percolation and refreezing of melt water, is similar to that of deep ice and hence the ice is polar in character.A compilation of published resistivities of deep ice from polar regions shows that the range of resistivities is very narrow (0.4 –2.0) x 105Ω m between –2 and – 29°C, irrespective of the physical setting and history of the ice. Typically, resistivity is within a factor of two of 80 kΩ m at –20° C with an activation energy of 0.22 eV. In contrast, the resistivity of surface ice at Wormald Ice Piedmont, where the ice is at 0°C throughout, is two orders of magnitude higher and falls at the lower end of the range of resistivities for temperate ice.


Sign in / Sign up

Export Citation Format

Share Document