scholarly journals Potential effects of subglacial water-pressure fluctuations on quarrying

1991 ◽  
Vol 37 (125) ◽  
pp. 27-36 ◽  
Author(s):  
Neal R. Iverson

AbstractWater-pressure fluctuations beneath glaciers may accelerate rock fracture by redistributing stresses on subglacial bedrock and changing the pressure of water in bedrock cracks. To study the potential influence of water-pressure fluctuations on the fracture of subglacial bedrock, ice flow over a small bedrock step with a water-filled cavity in its lee is numerically modeled, and stresses on the bedrock surface are calculated as a function of transient water pressures in the cavity. Stresses on the bed are then used to calculate principal stress differences within the step. Rapid reductions in cavity water pressure increase principal stress differences in the bed, increasing the likelihood of crack growth in the step and the formation of predominantly vertical fractures. Relatively impermeable bedrock may be most susceptible to fracturing during water-pressure reductions because high water pressure in cracks within the rock can be maintained, as water pressure decreases in cavities. These results, when considered in conjunction with the strong likelihood that increases in water pressure accelerate the removal of rock fragments loosened from the bed, suggest that in zones of ice-bed separation where water-pressure fluctuations typically are large, rates of quarrying may be higher than along other parts of glacier beds.

1991 ◽  
Vol 37 (125) ◽  
pp. 27-36 ◽  
Author(s):  
Neal R. Iverson

AbstractWater-pressure fluctuations beneath glaciers may accelerate rock fracture by redistributing stresses on subglacial bedrock and changing the pressure of water in bedrock cracks. To study the potential influence of water-pressure fluctuations on the fracture of subglacial bedrock, ice flow over a small bedrock step with a water-filled cavity in its lee is numerically modeled, and stresses on the bedrock surface are calculated as a function of transient water pressures in the cavity. Stresses on the bed are then used to calculate principal stress differences within the step. Rapid reductions in cavity water pressure increase principal stress differences in the bed, increasing the likelihood of crack growth in the step and the formation of predominantly vertical fractures. Relatively impermeable bedrock may be most susceptible to fracturing during water-pressure reductions because high water pressure in cracks within the rock can be maintained, as water pressure decreases in cavities. These results, when considered in conjunction with the strong likelihood that increases in water pressure accelerate the removal of rock fragments loosened from the bed, suggest that in zones of ice-bed separation where water-pressure fluctuations typically are large, rates of quarrying may be higher than along other parts of glacier beds.


1976 ◽  
Vol 16 (74) ◽  
pp. 309-310 ◽  
Author(s):  
H. Röthlisberger

Abstract Recent measurements of the water level (pressure head) in drill holes and natural moulins on two glacier tongues in Switzerland (Oberaletschgletscher and Gornergletscher) have confirmed that in those holes which link up to a well developed subglacial drainage system the daily piezometric fluctuations are in the order of 100 m (10 bar) and more. From the fact that it is relatively easy to establish such links (in our experiments at ice depths between 150 and 300 m), it is implied that an extended network of subglacial channels and cavities will be subjected to equally large pressure fluctuations with a mean water pressure considerably below the mean ice pressure at the bed. The scope of the present paper is to discuss some of the thermal effects of the low water pressure and its fluctuations. The effect in the ice—assuming temperate ice with a certain water content—is a positive temperature anomaly around the channel, in accordance with the stress field. The radial temperature profile in the ice around a conduit with a circular cross-section follow's directly from the solution for the stress field, and the heat flux can be deduced, allowing for the ice flow towards the conduit. Pressure changes in the conduit cause a rapid change of temperature (with an associated change in water content) and a related change in heat and ice flow. In the case of a channel or cavity at the glacier bed, the temperature fluctuation produced in the channel and the surrounding ice propagates into the substratum. With rising water pressure, i.e. falling temperature, the substratum becomes a heat source and some melting will occur at the ice/rock interface in a fringe zone around channels and cavities. It is this process which may help to explain the increased sliding component of glacier motion at the time of high melt-water run-off. Another intriguing question is what happens in a highly permeable substratum (shattered rock, moraine) at some distance away from a channel. The temperature profile is determined by the pressure melting point within the glacier down to the bed, and the positive geothermal gradient with increasing depth in the substratum below. The water pressure in the substratum is approximately equal to that in the channel, that is to say well below the mean pressure at the glacier bed. There is therefore an uppermost layer of the substratum at a temperature below the freezing temperature of the interstitial water, implying that the water must be frozen in this layer. This is one way to look at the problem. Starting out from the impermeable frozen layer it may be argued that the water film at the glacier bed is at a high pressure and the interstitial ice should melt until the water breaks through at the lower freezing boundary. This could only happen where and as long as there is no appreciable drainage of the water film and interstitial water. As soon as the water breaks through, the pressure will drop and presumably just enough leakage will be sustained to lead to a pressure drop across the frozen layer in accordance with the temperature profile. A generally impermeable glacier bed results as a most likely model, with permeable bands along subglacial drainage channels and eventual leakage holes in between. Taking the pressure fluctuations into account, one finds that temperature fluctuations have to be expected originating at the lower boundary of the frozen substratum, involving frost cycles. The erosive effectiveness of these will however be limited to the equivalent of the pressure cycles. (A double pressure amplitude of 130 m of water head corresponds roughly to a double temperature amplitude of 0.1 deg.)


1997 ◽  
Vol 24 ◽  
pp. 277-282 ◽  
Author(s):  
Luke Copland ◽  
Jon Harbor ◽  
Martin Sharp

As part of a study of ice dynamics, 25 boreholes were drilled with high-pressure hot water to the base of Haut Glacier d’Arolla, Switzerland. The boreholes were distributed across a half-section of the glacier, with closest spacing towards the glacier margin. The interior structure of the glacier was investigated by lowering a miniature color video camera down 11 boreholes, and the glacier bed was observed in 3 boreholes. The video showed distinct changes in ice conditions with depth in the glacier, including ice foliations and changes in ice-bubble content and color. A basal ice layer of varying thickness was recorded in two of the three boreholes in which the glacier bed was observed. This basal ice layer was characterized by relatively sediment-rich, coarse-clear ice, and was thickest in a zone of high water-pressure fluctuations. The available evidence suggests that localized freezing at the glacier bed caused by variations in water pressure is the primary source of this basal ice layer. The near-surface transition between finegrained and coarse-bubbly ice, and between coarse-bubbly and coarse-clear ice, appeared to correlate with the depths of influence of diurnal and annual cold waves, respectively. Two types of ice foliation were identified, consisting of distinct planar coarse-clear ice, or more pervasive coarse-bubbly or fine-grained ice. An origin from crevasse closure or the transposition of sedimentary stratification provides the most likely explanation for these.


1976 ◽  
Vol 16 (74) ◽  
pp. 309-310 ◽  
Author(s):  
H. Röthlisberger

AbstractRecent measurements of the water level (pressure head) in drill holes and natural moulins on two glacier tongues in Switzerland (Oberaletschgletscher and Gornergletscher) have confirmed that in those holes which link up to a well developed subglacial drainage system the daily piezometric fluctuations are in the order of 100 m (10 bar) and more. From the fact that it is relatively easy to establish such links (in our experiments at ice depths between 150 and 300 m), it is implied that an extended network of subglacial channels and cavities will be subjected to equally large pressure fluctuations with a mean water pressure considerably below the mean ice pressure at the bed. The scope of the present paper is to discuss some of the thermal effects of the low water pressure and its fluctuations.The effect in the ice—assuming temperate ice with a certain water content—is a positive temperature anomaly around the channel, in accordance with the stress field. The radial temperature profile in the ice around a conduit with a circular cross-section follow's directly from the solution for the stress field, and the heat flux can be deduced, allowing for the ice flow towards the conduit. Pressure changes in the conduit cause a rapid change of temperature (with an associated change in water content) and a related change in heat and ice flow. In the case of a channel or cavity at the glacier bed, the temperature fluctuation produced in the channel and the surrounding ice propagates into the substratum. With rising water pressure, i.e. falling temperature, the substratum becomes a heat source and some melting will occur at the ice/rock interface in a fringe zone around channels and cavities. It is this process which may help to explain the increased sliding component of glacier motion at the time of high melt-water run-off.Another intriguing question is what happens in a highly permeable substratum (shattered rock, moraine) at some distance away from a channel. The temperature profile is determined by the pressure melting point within the glacier down to the bed, and the positive geothermal gradient with increasing depth in the substratum below. The water pressure in the substratum is approximately equal to that in the channel, that is to say well below the mean pressure at the glacier bed. There is therefore an uppermost layer of the substratum at a temperature below the freezing temperature of the interstitial water, implying that the water must be frozen in this layer. This is one way to look at the problem. Starting out from the impermeable frozen layer it may be argued that the water film at the glacier bed is at a high pressure and the interstitial ice should melt until the water breaks through at the lower freezing boundary. This could only happen where and as long as there is no appreciable drainage of the water film and interstitial water. As soon as the water breaks through, the pressure will drop and presumably just enough leakage will be sustained to lead to a pressure drop across the frozen layer in accordance with the temperature profile. A generally impermeable glacier bed results as a most likely model, with permeable bands along subglacial drainage channels and eventual leakage holes in between. Taking the pressure fluctuations into account, one finds that temperature fluctuations have to be expected originating at the lower boundary of the frozen substratum, involving frost cycles. The erosive effectiveness of these will however be limited to the equivalent of the pressure cycles. (A double pressure amplitude of 130 m of water head corresponds roughly to a double temperature amplitude of 0.1 deg.)


1997 ◽  
Vol 24 ◽  
pp. 277-282 ◽  
Author(s):  
Luke Copland ◽  
Jon Harbor ◽  
Martin Sharp

As part of a study of ice dynamics, 25 boreholes were drilled with high-pressure hot water to the base of Haut Glacier d’Arolla, Switzerland. The boreholes were distributed across a half-section of the glacier, with closest spacing towards the glacier margin. The interior structure of the glacier was investigated by lowering a miniature color video camera down 11 boreholes, and the glacier bed was observed in 3 boreholes.The video showed distinct changes in ice conditions with depth in the glacier, including ice foliations and changes in ice-bubble content and color. A basal ice layer of varying thickness was recorded in two of the three boreholes in which the glacier bed was observed. This basal ice layer was characterized by relatively sediment-rich, coarse-clear ice, and was thickest in a zone of high water-pressure fluctuations. The available evidence suggests that localized freezing at the glacier bed caused by variations in water pressure is the primary source of this basal ice layer. The near-surface transition between finegrained and coarse-bubbly ice, and between coarse-bubbly and coarse-clear ice, appeared to correlate with the depths of influence of diurnal and annual cold waves, respectively. Two types of ice foliation were identified, consisting of distinct planar coarse-clear ice, or more pervasive coarse-bubbly or fine-grained ice. An origin from crevasse closure or the transposition of sedimentary stratification provides the most likely explanation for these.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jikai Zhou ◽  
Xiyao Zhao ◽  
Yu Nie ◽  
Yun Tian

In this paper, an experimental study was conducted on the influence of water pressure on concrete strength. Specimens were put in a self-designed device, applying 0–4 MPa water pressure on concrete, and then taken out for both static and dynamic compressive tests. Results showed that high water pressure caused inevitable damage to concrete, leading to 13.4% reduction in strength under 4 MPa water pressure. Specimens with lower strength grade were damaged more severely while under the same water pressure. Also, as water pressure increased, the moisture content of concrete grew linearly, and the trend for specimens with higher compressive strength was slower. A correlation was established between the water content increment and the reduction rate of strength. Moreover, the dynamic compressive strength decreased as water pressure increased but still higher than the static strength, illustrating an apparent strain rate effect. Meanwhile, water pressure and moisture content increment barely had any influence upon DIF within the testing conditions. Furthermore, equations for calculating both static and dynamic reduction rates of strength were built, based either on water pressure or on moisture content increment caused by that. Equations for strength prediction were also provided.


1981 ◽  
Vol 2 ◽  
pp. 57-62 ◽  
Author(s):  
Hans Rӧthlisberger ◽  
Almut Iken

A rapid displacement of glaciers occurs at times when the water supply from melting or lake drainage surmounts the capacity of the subglacial drainage system. It is explained by the hydraulic action of water at high pressure in cavities which open up on the lee side of undulations or steps of the glacier bed. It is suggested that, because of pressure-induced temperature fluctuations, rock fragments may freeze on to the glacier sole and be lifted out into an opening cavity. Laboratory experiments have shown that small pressure fluctuations of a few bars* only are sufficient for rock slabs of a considerable thickness to be moved in this way.


2005 ◽  
Vol 40 ◽  
pp. 102-106 ◽  
Author(s):  
T. J. Fudge ◽  
Joel T. Harper ◽  
Neil F. Humphrey ◽  
W. Tad Pfeffer

AbstractObservations from basal water-pressure sensors along the length of Bench Glacier, Alaska, USA, show that diurnal fluctuations of water pressure are seasonal and restricted to summer. Most notable about these fluctuations is their disappearance in the late summer and early autumn, long before the seasonal end of diurnal meltwater input. Here we present data documenting the end of diurnal water-pressure fluctuations during the 2002 and 2003 melt seasons. The end of diurnal fluctuations occurred abruptly in multiple boreholes spaced meters to kilometers apart. There was no obvious spatial progression of termination events, and a clear correlation with meteorological forcing or discharge in the outlet stream was not apparent. After diurnal pressure fluctuations ended, basal water pressure returned to a high, generally steady, value either in an irregular pattern or by a distinct increase. This high water pressure was interrupted by episodic, acyclic events throughout the autumn before becoming stable and high in winter.


1989 ◽  
Vol 35 (120) ◽  
pp. 201-208 ◽  
Author(s):  
Peter Jansson ◽  
Roger LeB. Hooke

AbstractTiltmeters that can detect changes in slope of a glacier surface as small as 0.1 μ rad have been used on Storglaciären. The records obtained to date have been from the upper part of the ablation area, where the bed of the glacier is overdeepened. A total of 82 d of records has been obtained for various time periods between early June and early September.There is generally a gradual change in inclination of the glacier surface over periods of several days, but these changes do not appear to be systematic. In particular, they are not consistent with vertical movements of stakes located 2–3 ice thicknesses away from the tiltmeters. This suggests that the tiltmeters are sensing disturbances over areas with diameters comparable to the local ice thickness.Superimposed on these trends are diurnal signals suggesting rises and falls of the surface just up-glacier from the riegel that bounds the overdeepening on its down-glacier end. These may be due to waves of high water pressure originating in a crevassed area near the equilibrium line. If this interpretation is correct, the waves apparently move down-glacier at speeds of 20–60 m h−1and become sufficiently focused, either by the bed topography or by conduit constrictions, to result in local uplift of the surface. Also observed are abrupt tilts towards the glacier center line shortly after the beginning of heavy rainstorms. These appear to be due to longitudinal stretching as the part of the glacier below the riegel accelerates faster than that above. Water entering the glacier by way of a series of crevasses over the riegel is believed to be responsible for this differential acceleration. In June 1987, a dramatic event was registered, probably reflecting the initial summer acceleration of the glacier.


Sign in / Sign up

Export Citation Format

Share Document