scholarly journals Adenovirus, parainfluenza virus and respiratory syncytial virus antibodies in the sera of Jamaicans

1972 ◽  
Vol 70 (3) ◽  
pp. 523-529 ◽  
Author(s):  
Roy Jennings

SUMMARYSurveys for respiratory virus antibodies in the Jamaican population have shown that adenovirus, respiratory syncytial virus and parainfluenza types 1 and 3 virus antibodies are acquired early in life. The incidence of haemagglutination-inhibiting antibodies to parainfluonza viruses increases rapidly with age and almost all adults possess parainfluenza type 3 antibody, usually in high titre. Parainfluenza type 1 antibodies are only slightly less common. Complement-fixing antibodies to the adenovirus group were also observed to increase in incidence with age.Complement-fixing antibody to respiratory syncytial virus was less common in Jamaican sera than antibody to the other respiratory viruses described here. The highest titres were observed in the youngest age-group.

1998 ◽  
Vol 36 (11) ◽  
pp. 3149-3154 ◽  
Author(s):  
Carla Osiowy

Diagnosis of respiratory virus infections currently involves detection by isolation or antigen detection, which usually identifies only a single suspected agent. To permit identification of more than one respiratory virus in clinical specimens, a rapid detection method involving a single-step, multiplex reverse transcription-PCR (RT-PCR) assay was developed. The assay included five primer sets that amplified the RNA of respiratory syncytial virus subtypes A and B, parainfluenza virus types 1, 2, and 3, and adenovirus types 1 to 7. Initially the assay was tested on tissue culture-grown virus and was found to be specific for all 12 prototype viruses tested, with no interassay cross amplification or amplification of other respiratory viruses. Assay sensitivity allowed a detection range of 0.2 50% tissue culture infectious dose (TCID50) for adenovirus to 250 TCID50 for parainfluenza virus type 1. The multiplex RT-PCR assay was also able to directly detect viruses in respiratory specimens, with virus being detected in 41 of 112 samples as compared to 34 of 112 samples detected by direct immunofluorescence or antigen detection following specimen culture. This suggests that the multiplex RT-PCR assay can be used as a rapid and sensitive diagnostic method for major respiratory viruses.


1994 ◽  
Vol 12 (8) ◽  
pp. 813-818 ◽  
Author(s):  
Run-Pan Du ◽  
Gail E. D. Jackson ◽  
Philip R. Wyde ◽  
Wei-Yao Yan ◽  
Qijun Wang ◽  
...  

2001 ◽  
Vol 75 (10) ◽  
pp. 4594-4603 ◽  
Author(s):  
Alexander C. Schmidt ◽  
Josephine M. McAuliffe ◽  
Brian R. Murphy ◽  
Peter L. Collins

ABSTRACT Recombinant bovine/human parainfluenza virus type 3 (rB/HPIV3), a recombinant bovine PIV3 (rBPIV3) in which the F and HN genes were replaced with their HPIV3 counterparts, was used to express the major protective antigens of respiratory syncytial virus (RSV) in order to create a bivalent mucosal vaccine against RSV and HPIV3. The attenuation of rB/HPIV3 is provided by the host range restriction of the BPIV3 backbone in primates. RSV G and F open reading frames (ORFs) were placed under the control of PIV3 transcription signals and inserted individually into the rB/HPIV3 genome in the promoter-proximal position preceding the nucleocapsid protein gene. The recombinant PIV3 expressing the RSV G ORF (rB/HPIV3-G1) was not restricted in its replication in vitro, whereas the virus expressing the RSV F ORF (rB/HPIV3-F1) was eightfold restricted compared to its rB/HPIV3 parent. Both viruses replicated efficiently in the respiratory tract of hamsters, and each induced RSV serum antibody titers similar to those induced by RSV infection and anti-HPIV3 titers similar to those induced by HPIV3 infection. Immunization of hamsters with rB/HPIV3-G1, rB/HPIV3-F1, or a combination of both viruses resulted in a high level of resistance to challenge with RSV or HPIV3 28 days later. These results describe a vaccine strategy that obviates the technical challenges associated with a live attenuated RSV vaccine, providing, against the two leading viral agents of pediatric respiratory tract disease, a bivalent vaccine whose attenuation phenotype is based on the extensive host range sequence differences of BPIV3.


2016 ◽  
Vol 90 (21) ◽  
pp. 10022-10038 ◽  
Author(s):  
Bo Liang ◽  
Joan O. Ngwuta ◽  
Richard Herbert ◽  
Joanna Swerczek ◽  
David W. Dorward ◽  
...  

ABSTRACTHuman respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced “high-quality” RSV-neutralizing antibodies, defined as antibodies that neutralize RSVin vitrowithout added complement (B. Liang et al., J Virol 89:9499–9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials.IMPORTANCEHuman respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines.


1974 ◽  
Vol 72 (2) ◽  
pp. 255-264 ◽  
Author(s):  
P. G. Higgins

SUMMARYDuring the period 1961–71 of 1785 viruses isolated from patients in the general population 503 (28%) were rhinoviruses, 465 (26%) influenza viruses, 248 (14%) enteroviruses, 234 (13%) herpes simplex virus, 132 (7%) parainfluenza viruses, 129 (7%) adenoviruses and 49 (3%) respiratory syncytial virus. Also isolated were 18 strains of mumps virus, 7 coronaviruses and 295 streptococci of groups A, C or G.Fluctuations were observed in the frequency with which respiratory syncytial virus, parainfluenza virus type 2, and the adenoviruses were isolated over the 10-year period.Influenza viruses types A and B, parainfluenza viruses types 1 and 2, respiratory syncytial virus, adenoviruses types 3, 4, 6, 7 and 21, and many enteroviruses were all associated with outbreaks.Infections with influenza viruses A and B and parainfluenza viruses types 1 and 2 came during the winter, whereas those with parainfluenza virus type 3, enteroviruses, and rhinoviruses were more frequently seen in the summer and early autumn.


Sign in / Sign up

Export Citation Format

Share Document