Vestibular evoked myogenic potentials: review

2010 ◽  
Vol 124 (10) ◽  
pp. 1043-1050 ◽  
Author(s):  
R Mudduwa ◽  
N Kara ◽  
D Whelan ◽  
Anirvan Banerjee

AbstractBackground:Disorders of balance often pose a diagnostic conundrum for clinicians, and a multitude of investigations have emerged over the years. Vestibular evoked myogenic potential testing is a diagnostic tool which can be used to assess vestibular function. Over recent years, extensive study has begun to establish a broader clinical role for vestibular evoked myogenic potential testing.Objectives:To provide an overview of vestibular evoked myogenic potential testing, and to present the evidence for its clinical application.Review type:Structured literature search according to evidence-based medicine guidelines, performed between November 2008 and April 2009. No restrictions were applied to the dates searched.Conclusion:The benefits of vestibular evoked myogenic potential testing have already been established as regards the diagnosis and monitoring of several clinical conditions. Researchers continue to delve deeper into potential new clinical applications, with early results suggesting promising future developments.

2010 ◽  
Vol 125 (4) ◽  
pp. 343-347 ◽  
Author(s):  
K Kumar ◽  
S Kumar Sinha ◽  
A Kumar Bharti ◽  
A Barman

AbstractIntroduction:Vestibular evoked myogenic potentials are short latency electrical impulses that are produced in response to higher level acoustic stimuli. They are used clinically to diagnose sacculocollic pathway dysfunction.Aim:This study aimed to compare the vestibular evoked myogenic potential responses elicited by click stimuli and short duration tone burst stimuli, in normal hearing individuals.Method:Seventeen subjects participated. In all subjects, we assessed vestibular evoked myogenic potentials elicited by click and short duration tone burst stimuli.Results and conclusion:The latency of the vestibular evoked myogenic potential responses (i.e. the p13 and n23 peaks) was longer for tone burst stimuli compared with click stimuli. The amplitude of the p13–n23 waveform was greater for tone burst stimuli than click stimuli. Thus, the click stimulus may be preferable for clinical assessment and identification of abnormalities as this stimulus has less variability, while a low frequency tone burst stimulus may be preferable when assessing the presence or absence of vestibular evoked myogenic potential responses.


2014 ◽  
Vol 67 (suppl. 1) ◽  
pp. 38-45
Author(s):  
Slobodanka Lemajic-Komazec ◽  
Zoran Komazec ◽  
Ljiljana Vlaski ◽  
Slobodan Savovic ◽  
Maja Buljcik-Cupic ◽  
...  

Introduction. Vestibular evoked myogenic potentials are neurophysiological method for examining of saccular function, the bottom of the vestibular nerve that in nervates the sacculus and central vestibular pathways. Those are inhibitory potentials of the sternocleido mastoid musclein response to ipsilateral acoustic stimulation of the sacculus. Parameters of vestibular evoked myogenic potential testing include threshold, latencies of p1 and n1 wave and interamplitude p13-n23, interaural difference of p13 and n23 latency and interaural amplitude difference ratio. The aim of this study was to compire parameters standardization of vestibular evoked myogenic potentials responses, latency p13 and n23 of waves, the amplitude of responses and interaural differences in the amplitude andto determinewhether there is a difference in values between the sexes. Material and methods. This research was meant to be a prospective study which included 30 normal audiovestibular volunteers of both sexes. The group consisted of 53.3% women and 46.7% men. The saccular function testing by vestibular evoked myogenic potentials was performed monoaurally using air-conductive 500 Hz tone burst auditory stimulation. Results. The average value of the p13 wave latency in healthy subjects of this study was 15.18 ms (?1.24) while the mean latency of n23 waves in the same subjects was 25.00 ms (?2.23). The average value of the amplitude of the p13-n23 waves was 80.28 (34. ?04) microvolts. Conclusion. The difference in the values of the basic parameters of vestibular evoked myogenic potential responses between men and women does not exist. No differences between the right and the left ear in the values of latency and amplitude were observed.


2012 ◽  
Vol 126 (7) ◽  
pp. 683-691 ◽  
Author(s):  
L Manzari ◽  
A M Burgess ◽  
I S Curthoys

AbstractBackground and aims:Previous evidence shows that the n10 component of the ocular vestibular evoked myogenic potential indicates utricular function, while the p13 component of the cervical vestibular evoked myogenic potential indicates saccular function. This study aimed to assess the possibility of differential utricular and saccular function testing in the clinic, and whether loss of saccular function affects utricular response.Methods:Following vibration conduction from the mid-forehead at the hairline, the ocular n10 component was recorded by surface electromyograph electrodes beneath both eyes, while the cervical p13–n23 component was recorded by surface electrodes over the tensed sternocleidomastoid muscles.Results:Fifty-nine patients were diagnosed with probable inferior vestibular neuritis, as their cervical p13–n23 component was asymmetrical (i.e. reduced or absent on the ipsilesional side), while their ocular n10 component was symmetrical (i.e. normal beneath the contralesional eye).Conclusion:The sense organ responsible for the cervical and the ocular vestibular evoked myogenic potentials cannot be the same, as one response was normal while the other was not. Reduced or absent saccular function has no detectable effect on the ocular n10 component. On vibration stimulation, the ocular n10 component indicates utricular function and the cervical p13–n23 component indicates saccular function.


2020 ◽  
Vol 40 (01) ◽  
pp. 018-032 ◽  
Author(s):  
Rachael L. Taylor ◽  
Miriam S. Welgampola ◽  
Benjamin Nham ◽  
Sally M. Rosengren

AbstractVestibular-evoked myogenic potentials (VEMPs) are short-latency, otolith-dependent reflexes recorded from the neck and eye muscles. They are widely used in neuro-otology clinics as tests of otolith function. Cervical VEMPs are recorded from the neck muscles and reflect predominantly saccular function, while ocular VEMPs are reflexes of the extraocular muscles and reflect utricular function. They have an important role in the diagnosis of superior canal dehiscence syndrome and provide complementary information about otolith function that is useful in the diagnosis of other vestibular disorders. Like other evoked potentials, they can provide important localizing information about lesions that may occur along the VEMP pathway. This review will describe the VEMP abnormalities seen in common disorders of the vestibular system and its pathways.


Author(s):  
Yini Sun ◽  
Allison Coltisor ◽  
Gary P. Jacobson ◽  
Richard A. Roberts

Abstract Background We describe herein the case of a patient whose primary complaints were episodic vertigo and “depersonalization,” a sensation of detachment from his own body. Purpose This case study aims to further clinical knowledge and insight into the clinical evaluation of vertiginous patients with complaints of depersonalization. Research Design This is a case study. Data Collection and Analysis A retrospective chart review of vestibular function testing done on a vertiginous patient with complaints of depersonalization was performed. Results Vestibular function testing revealed absent cervical and ocular vestibular evoked myogenic potentials on the left side with normal vHIT or video Head Impulse Test, videonystagmography, and rotational chair results, suggesting peripheral vestibular impairment isolated to the left saccule and utricle. Conclusion The otolith end organ impairment explains the patient's postural deviation to the left side during attempts to ambulate. We recommend that clinicians should be attentive to patient complaints of depersonalization and perform vestibular evoked myogenic potential testing to determine whether evidence of at least a unilateral peripheral otolith end organ impairment exists.


2018 ◽  
Vol 132 (10) ◽  
pp. 906-910 ◽  
Author(s):  
N S Longridge ◽  
A I Mallinson

AbstractBackgroundOtolithic function is poorly understood, but vestibular-evoked myogenic potential testing has allowed the documentation of pathology in patients who complain of imbalance.MethodsSeventy-four patients with traumatic and non-traumatic vestibular disease were sequentially assessed at a tertiary referral neuro-otology unit in a teaching hospital. A detailed history of all patients was taken and standard vestibular assessment was conducted using the technique described in the companion paper. The results of both groups of patients were analysed and the rate of abnormalities was assessed.ResultsThere was a high rate of abnormalities, including bilateral pathology, in a significant number of patients. Many patients in both groups inexplicably failed to recover.ConclusionVestibular-evoked myogenic potentials are helpful in documenting pathology, including bilateral pathology, which is outlined in the literature as being exceedingly difficult to compensate for.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Su-Jiang Xie ◽  
Hong-Zhe Bi ◽  
Qin Yao

Vestibular evoked myogenic potential (VEMP) in response to a loud air conducted sound (ACS) recorded from extraocular muscles, the so-called ocular VEMP (oVEMP), has been confirmed to be able to evaluate utricular function. This study aimed to evaluate the effect of sleep deprivation (SD) on oVEMP parameters. oVEMPs were recorded in 20 male healthy subjects once after an ordinary sleep and once after 26–29 h of SD. The latencies of peak N1 and P1, N1-P1 amplitude, N1-P1 interval, and asymmetry ratio (AR) of oVEMP recorded from both eyes under normal sleep and SD conditions were 10.04 ± 0.59 ms versus 10.56 ± 0.69 ms (left eye), 14.95 ± 0.92 ms versus 15.64 ± 1.05 ms (left eye), and 7.44 ± 2.86 µV versus 5.26 ± 2.15 µV (left eye); 10.08 ± 0.66 ms versus 10.64 ± 0.73 ms (right eye), 14.88 ± 0.89 ms versus 15.59 ± 1.02 ms (right eye), and 7.16 ± 2.88 µV versus 5.04 ± 2.05 µV(right eye); 10.40 ± 5.81% versus 11.43 ± 6.37%, respectively. After SD, the latencies of oVEMP were delayed and N1-P1 amplitude was lower, whereas N1-P1 interval and AR remained unchanged. The present study showed that oVEMP test could be used to evaluate the fatigue induced by SD.


2005 ◽  
Vol 114 (9) ◽  
pp. 717-721 ◽  
Author(s):  
Shih-Wei Kuo ◽  
Ting-Hua Yang ◽  
Yi-Ho Young

Objectives: The aim of this study was to apply videonystagmography (VNG) and vestibular evoked myogenic potential (VEMP) tests to patients with Meniere attacks, to explore the mechanics of where saccular disorders may affect the semicircular canals. Methods: From January 2001 to December 2003, 12 consecutive patients with unilateral definite Meniere's disease with vertiginous attacks underwent VNG for recording spontaneous nystagmus, as well as VEMP tests. Results: At the very beginning of the Meniere attack, the spontaneous nystagmus beat toward the lesion side in 5 patients (42%) and toward the healthy side in 7 patients (58%). Twenty-four hours later, only 6 patients (50%) showed spontaneous nystagmus beating toward the healthy side. Nevertheless, spontaneous nystagmus subsided in all patients within 48 hours. The VEMP test was performed within 24 hours of a Meniere attack; the VEMPs were normal in 4 patients and abnormal in 8 patients (67%). After 48 hours, 4 patients with initially abnormal VEMPs had resolution and return to normal VEMPs, and the other 4 patients still had absent VEMPs. Conclusions: Most patients (67%) with Meniere attacks revealed abnormal VEMPs, indicating that the saccule participates in a Meniere attack. This is an important idea that stimulates consideration of the mechanism of Meniere attacks.


2016 ◽  
Vol 131 (1) ◽  
pp. 56-63 ◽  
Author(s):  
X-D Xu ◽  
J Hu ◽  
Q Zhang ◽  
Y Zhang ◽  
X-T Zhang ◽  
...  

AbstractObjective:This study aimed to define the characteristics and use of ocular and cervical vestibular evoked myogenic potentials for evaluating paediatric cochlear implant candidates.Methods:Ocular and cervical vestibular evoked myogenic potentials of 34 paediatric cochlear implant candidates were analysed. All patients also underwent a routine audiological examination, including computed tomography.Results:In all, 27 patients with normal inner-ear structures had absent or impaired vestibular evoked myogenic potential responses. In paediatric candidates with inner-ear malformations, ocular and cervical vestibular evoked myogenic potentials had lower thresholds and higher amplitudes. Vestibular evoked myogenic potential responses in this cohort were classified into three groups. There was significant concordance between vestibular evoked myogenic potentials and temporal bone computed tomography findings.Conclusion:Ocular and cervical vestibular evoked myogenic potential waveforms were different in paediatric candidates with normal and abnormal inner-ear structures. Therefore, vestibular evoked myogenic potential responses can indicate temporal bone structure.


Sign in / Sign up

Export Citation Format

Share Document