scholarly journals Vestibular evoked myogenic potential

2014 ◽  
Vol 67 (suppl. 1) ◽  
pp. 38-45
Author(s):  
Slobodanka Lemajic-Komazec ◽  
Zoran Komazec ◽  
Ljiljana Vlaski ◽  
Slobodan Savovic ◽  
Maja Buljcik-Cupic ◽  
...  

Introduction. Vestibular evoked myogenic potentials are neurophysiological method for examining of saccular function, the bottom of the vestibular nerve that in nervates the sacculus and central vestibular pathways. Those are inhibitory potentials of the sternocleido mastoid musclein response to ipsilateral acoustic stimulation of the sacculus. Parameters of vestibular evoked myogenic potential testing include threshold, latencies of p1 and n1 wave and interamplitude p13-n23, interaural difference of p13 and n23 latency and interaural amplitude difference ratio. The aim of this study was to compire parameters standardization of vestibular evoked myogenic potentials responses, latency p13 and n23 of waves, the amplitude of responses and interaural differences in the amplitude andto determinewhether there is a difference in values between the sexes. Material and methods. This research was meant to be a prospective study which included 30 normal audiovestibular volunteers of both sexes. The group consisted of 53.3% women and 46.7% men. The saccular function testing by vestibular evoked myogenic potentials was performed monoaurally using air-conductive 500 Hz tone burst auditory stimulation. Results. The average value of the p13 wave latency in healthy subjects of this study was 15.18 ms (?1.24) while the mean latency of n23 waves in the same subjects was 25.00 ms (?2.23). The average value of the amplitude of the p13-n23 waves was 80.28 (34. ?04) microvolts. Conclusion. The difference in the values of the basic parameters of vestibular evoked myogenic potential responses between men and women does not exist. No differences between the right and the left ear in the values of latency and amplitude were observed.

2010 ◽  
Vol 125 (4) ◽  
pp. 343-347 ◽  
Author(s):  
K Kumar ◽  
S Kumar Sinha ◽  
A Kumar Bharti ◽  
A Barman

AbstractIntroduction:Vestibular evoked myogenic potentials are short latency electrical impulses that are produced in response to higher level acoustic stimuli. They are used clinically to diagnose sacculocollic pathway dysfunction.Aim:This study aimed to compare the vestibular evoked myogenic potential responses elicited by click stimuli and short duration tone burst stimuli, in normal hearing individuals.Method:Seventeen subjects participated. In all subjects, we assessed vestibular evoked myogenic potentials elicited by click and short duration tone burst stimuli.Results and conclusion:The latency of the vestibular evoked myogenic potential responses (i.e. the p13 and n23 peaks) was longer for tone burst stimuli compared with click stimuli. The amplitude of the p13–n23 waveform was greater for tone burst stimuli than click stimuli. Thus, the click stimulus may be preferable for clinical assessment and identification of abnormalities as this stimulus has less variability, while a low frequency tone burst stimulus may be preferable when assessing the presence or absence of vestibular evoked myogenic potential responses.


2017 ◽  
Vol 22 (4-5) ◽  
pp. 282-291 ◽  
Author(s):  
Kimberley S. Noij ◽  
Barbara S. Herrmann ◽  
Steven D. Rauch ◽  
John J. Guinan Jr.

Background: The cervical vestibular evoked myogenic potential (cVEMP) represents an inhibitory reflex of the saccule measured in the ipsilateral sternocleidomastoid muscle (SCM) in response to acoustic or vibrational stimulation. Since the cVEMP is a modulation of SCM electromyographic (EMG) activity, cVEMP amplitude is proportional to muscle EMG amplitude. We sought to evaluate muscle contraction influences on cVEMP peak-to-peak amplitudes (VEMPpp), normalized cVEMP amplitudes (VEMPn), and inhibition depth (VEMPid). Methods: cVEMPs at 500 Hz were measured in 25 healthy subjects for 3 SCM EMG contraction ranges: 45-65, 65-105, and 105-500 μV root mean square (r.m.s.). For each range, we measured cVEMP sound level functions (93-123 dB peSPL) and sound off, meaning that muscle contraction was measured without acoustic stimulation. The effect of muscle contraction amplitude on VEMPpp, VEMPn, and VEMPid and the ability to distinguish cVEMP presence/absence were evaluated. Results: VEMPpp amplitudes were significantly greater at higher muscle contractions. In contrast, VEMPn and VEMPid showed no significant effect of muscle contraction. Cohen's d indicated that for all 3 cVEMP metrics contraction amplitude variations produced little change in the ability to distinguish cVEMP presence/absence. VEMPid more clearly indicated saccular output because when no acoustic stimulus was presented the saccular inhibition estimated by VEMPid was zero, unlike those by VEMPpp and VEMPn. Conclusion: Muscle contraction amplitude strongly affects VEMPpp amplitude, but contractions 45-300 μV r.m.s. produce stable VEMPn and VEMPid values. Clinically, there may be no need for subjects to exert high contraction effort. This is especially beneficial in patients for whom maintaining high SCM contraction amplitudes is challenging.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Dessai Teja Deepak ◽  
Jayashree S. Bhat ◽  
Kaushlendra Kumar

Aim. Ocular Evoked Myogenic Potential (oVEMP) are short latency potentials evoked by higher acoustic stimulation. In this study, we aimed at comparing the click, 500 Hz mixed modulated, and 500 Hz short duration tone burst stimuli using oVEMP. Material. Click, 500 Hz mixed modulated and 500 Hz short duration tone burst stimuli were used for the study. Method. Conventional sampling and conveneint study design were used. Sixty healthy subjects underwent contralateral oVEMP testing maintaining 30 degrees upward gaze. Single channel electrode montage was applied to record oVEMP response. Results. On statistical analysis the three stimuli evoked equal response rates (100%), and when latency of n1 and p1 and peak-peak amplitude were compared, the click evoked showed significantly early latency and lower peak-peak amplitude than the 500 Hz stimuli. Five hundred Hz stimuli did not show significant difference in latency and peak-peak amplitude of n1-p1. Discussion. Thus, 500 Hz stimuli can evoke better latency and peak-peak amplitude. oVEMP has good clinical significance in diagnosing subjects with vestibular dysfunction. To add to the sensitivity of the oVEMP test, 500 Hz stimuli may also be used as it can evoke better oVEMP responses in clinical population with good morphology.


2013 ◽  
Vol 127 (9) ◽  
pp. 848-853 ◽  
Author(s):  
S Isaradisaikul ◽  
N Navacharoen ◽  
C Hanprasertpong ◽  
J Kangsanarak

AbstractObjectives:To analyse cervical vestibular evoked myogenic potential response parameters in normal volunteers and vertiginous patients.Subjects and methods:A prospective study of 50 normal subjects and 50 patients with vertigo was conducted at Chiang Mai University Hospital, Thailand. Cervical vestibular evoked myogenic potential responses were measured using air-conducted, 500-Hz, tone-burst stimuli with subjects in a sitting position with their head turned toward the contralateral shoulder.Results:The mean ± standard deviation age and male:female ratio in the normal (44.0 ± 9.3 years; 12:38) and vertigo groups (44.7 ± 9.8 years; 17:33) were not significantly different. The prevalence of absent responses in the normal (14 per cent) and vertigo ears (46 per cent) differed significantly (p < 0.0001). Other cervical vestibular evoked myogenic potential parameters (i.e. response threshold, P1 and N1 latency, P1–N1 interlatency and interamplitude, inter-ear difference in P1 threshold, and asymmetry ratio) showed no inter-group differences.Conclusion:The absence of a cervical vestibular evoked myogenic potential response is useful in the identification of vestibular dysfunction. However, patients should undergo a comprehensive battery of other vestibular tests to supplement their cervical vestibular evoked myogenic potential response findings.


2019 ◽  
Vol 74 (2) ◽  
pp. 1-6
Author(s):  
Klaudyna Zwierzyńska ◽  
Magdalena Lachowska ◽  
Emanuel Tataj ◽  
Kazimierz Niemczyk

Background: Ocular vestibular-evoked myogenic potential (oVEMP) is one of recently introduced tests used to assess the function of the equilibrium system. It is still under research and no consensus has been reached yet. Aim: To analyze AC-oVEMP response parameters in subjects with no history of neurological or vestibular deficits. Material and Methods: The AC-oVEMPs collected from 50 subjects (100 ears) were analyzed in this prospective study for the response presence in the time domain, the latencies and amplitudes of the waves. Results: No statistically significant differences were observed between the right and left ear considering both N1 latency, and amplitude. Significant differences were noted when comparing the groups <40 yo vs ≥40 yo (shorter latencies and higher amplitudes were observed in subjects <40). Conclusions and Significance: This thorough AC-oVEMP analysis in a group of healthy volunteers facilitated the proposal of reference ranges with a simultaneous indication of age-related differences. Shorter oVEMP latencies and higher amplitudes were observed in subjects <40 yo, while in the subjects ≥40 yo the latencies were longer and the amplitudes lower.


2019 ◽  
Vol 10 (2) ◽  
pp. 1243-1248
Author(s):  
Cek Dara Manja ◽  
Dennis

The height of the maxillary alveolar ridge can be measured using panoramic radiography. The decline occurred because the height of the alveolar ridge undergoes slow physiological resorption due to the absence of mechanical stimulus. The purpose of this research is to know the difference and the average height of the maxillary alveolar ridge in edentulous and dentate women using panoramic radiography. This study is an analytical method with a cross-sectional approach. A total sample of 40 women, edentulous and dentate has been measured. Measurements were made by measuring the distance between the lowest point of the infraorbital ridge and alveolar crest maxilla on the incisor point, right and left premolar, right and left molar. A statistical test is done using independent t-test. The results showed that the average value of a dentate women sample is greater than edentulous. The average value obtained by the dentate sample is greatest in incisor point by 37,57mm± 3,34mm and the smallest at the right molar point by 33,87mm ± 2,81mm. The average value obtained by the edentulous sample is greatest in incisor point by 35,30mm ± 2,79mm and the smallest at the right molar point by 31,84mm ± 3,85mm. It can be concluded that there is a significant difference in the height of the maxillary alveolar ridge on an edentulous sample and dentate, except the right molar teeth. The average height of the maxillary alveolar ridge in an edentulous sample is 33,35mm ± 3,43mm, and the dentate sample is 35,66mm ± 3,21mm.


2018 ◽  
Vol 23 (6) ◽  
pp. 335-344 ◽  
Author(s):  
Kimberley S. Noij ◽  
Barbara S. Herrmann ◽  
John J. Guinan Jr. ◽  
Steven D. Rauch

Background: The cervical vestibular evoked myogenic potential (cVEMP) test measures saccular and inferior vestibular nerve function. The cVEMP can be elicited with different frequency stimuli and interpreted using a variety of metrics. Patients with superior semicircular canal dehiscence (SCD) syndrome generally have lower cVEMP thresholds and larger amplitudes, although there is overlap with healthy subjects. The aim of this study was to evaluate which metric and frequency best differentiate healthy ears from SCD ears using cVEMP. Methods: Twenty-one patients with SCD and 23 age-matched controls were prospectively included and underwent cVEMP testing at 500, 750, 1,000 and 2,000 Hz. Sound level functions were obtained at all frequencies to acquire threshold and to calculate normalized peak-to-peak amplitude (VEMPn) and VEMP inhibition depth (VEMPid). Third window indicator (TWI) metrics were calculated by subtracting the 250-Hz air-bone gap from the ipsilateral cVEMP threshold at each frequency. Ears of SCD patients were divided into three groups based on CT imaging: dehiscent, thin or unaffected. The ears of healthy age-matched control subjects constituted a fourth group. Results: Comparing metrics at all frequencies revealed that 2,000-Hz stimuli were most effective in differentiating SCD from normal ears. ROC analysis indicated that for both 2,000-Hz cVEMP threshold and for 2,000-Hz TWI, 100% specificity could be achieved with a sensitivity of 92.0%. With 2,000-Hz VEMPn and VEMPid at the highest sound level, 100% specificity could be achieved with a sensitivity of 96.0%. Conclusion: The best diagnostic accuracy of cVEMP in SCD patients can be achieved with 2,000-Hz tone burst stimuli, regardless of which metric is used.


2010 ◽  
Vol 124 (10) ◽  
pp. 1043-1050 ◽  
Author(s):  
R Mudduwa ◽  
N Kara ◽  
D Whelan ◽  
Anirvan Banerjee

AbstractBackground:Disorders of balance often pose a diagnostic conundrum for clinicians, and a multitude of investigations have emerged over the years. Vestibular evoked myogenic potential testing is a diagnostic tool which can be used to assess vestibular function. Over recent years, extensive study has begun to establish a broader clinical role for vestibular evoked myogenic potential testing.Objectives:To provide an overview of vestibular evoked myogenic potential testing, and to present the evidence for its clinical application.Review type:Structured literature search according to evidence-based medicine guidelines, performed between November 2008 and April 2009. No restrictions were applied to the dates searched.Conclusion:The benefits of vestibular evoked myogenic potential testing have already been established as regards the diagnosis and monitoring of several clinical conditions. Researchers continue to delve deeper into potential new clinical applications, with early results suggesting promising future developments.


2007 ◽  
Vol 118 (8) ◽  
pp. 1685-1690 ◽  
Author(s):  
Toshihisa Murofushi ◽  
Shinichi Iwasaki ◽  
Hidenori Ozeki ◽  
Munetaka Ushio ◽  
Yasuhiro Chihara

Sign in / Sign up

Export Citation Format

Share Document