The oldest-known metazoan parasite?

2004 ◽  
Vol 78 (6) ◽  
pp. 1214-1216 ◽  
Author(s):  
Michael G. Bassett ◽  
Leonid E. Popov ◽  
Lars E. Holmer

A unique specimen of the micromorphic fossil lingulate (organophosphatic-shelled) brachiopod Linnarssonia constans Koneva, 1983 from the late Lower Cambrian Shabakty Group of the Malyi Karatau Range in Kazakhstan, Central Asia, preserves evidence of infestation within the mantle cavity by a vermiform animal, leading to the growth of an internal tubular protuberance (Fig. 1) resulting from symbiosis some 520 million years ago. Examples of symbiotic relationships between metazoans in the early Paleozoic are sparse (Conway Morris, 1981, 1990; Conway Morris and Crompton, 1982). Descriptions of a variety of galls and tumorlike swellings in some trilobites extend records back to the Middle Cambrian (Conway Morris, 1990), but their interpretation as traces of endoparasitic activity remains somewhat speculative. Thus galllike swellings on the stems of Silurian echinoderms (Franzen, 1974), vermiform tubes on some early Ordovician dendroid graptolites (Conway Morris, 1990), and various tubes and blisters on graptoloid graptolites (see Bates and Loydell, 2000 for review) are among the hitherto earliest known convincing records of host-parasite relationships within metazoans. Our example reported here predates the oldest of these previous records by approximately 35 to 40 million years, and demonstrates that symbiosis involving complex adaptations (e.g., larval settlement on or within living tissue and exploitation of feeding systems of the host) and codependent life cycles were already established soon after the ‘explosive’ evolutionary radiation of marine metazoans in the early Cambrian. The fossil evidence of infestation on lophophorates is especially sparse, at best. The oldest hitherto undoubted records are both from brachiopods of Devonian age, in the Lower Devonian Emsian Stage of eastern Australia and in the Middle Devonian Givetian Stage of the Holy Cross Mountains in Poland, respectively.

A commonality among oceanic life cycles is a process known as settlement, where dispersing propagules transition to the sea floor. For many marine invertebrates, this transition is irreversible, and therefore involves a crucial decision-making process through which larvae evaluate their juvenile habitat-to-be. In this chapter, we consider aspects of the external environment that could influence successful settlement. Specifically, we discuss water flow across scales, and how larvae can engage behaviors to influence where ocean currents take them, and enhance the likelihood of their being carried toward suitable settlement locations. Next, we consider what senses larvae utilize to evaluate their external environment and properly time such behavioral modifications, and settlement generally. We hypothesize that larvae integrate these various external cues in a hierarchical fashion, with differing arrangements being employed across ontogeny and among species. We conclude with a brief discussion of the future promises of larval biology, ecology, and evolution.


Author(s):  
Stefania Puce ◽  
Carlo Cerrano ◽  
Cristina Gioia Di Camillo ◽  
Giorgio Bavestrello

Hydroids can establish symbiotic relationships with most marine phyla. Almost entire genera or even families are associated with specific groups (e.g. Hydractiniidae and Cytaeididae with gastropods and hermit crabs, Zancleidae with bryozoans,Dipurenawith sponges,Ralphariawith octocorals,Eugymnantheawith bivalves,ProboscidactylaandTeissierawith serpulids,Bythotiarawith tunicates). Generally, the symbiotic groups belong to the Anthomedusae that, due to the absence of theca, are more plastic in establishing trophic relationships with the hosts. Nevertheless a number of scattered species, mainly Leptomedusae, are strictly associated to algae or sea grasses: in these cases no evident morphological or behavioural adaptations were observed. In animal symbiosis several unrelated symbiotic species show polymorphic colonies or a strong reduction in number and/or size of the tentacles, which are sometimes completely lost. Moreover, these symbiotic species may lack perisarc even in the hydrorhiza.In this paper we summarize the morphological and behavioural adaptations of symbiotic species suggesting that the described aptitude of hydroids to establish relationships with other organisms is not only the result but also the source of the evolutionary radiation of this group.


PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204467 ◽  
Author(s):  
Alexander O. Frolov ◽  
Marina N. Malysheva ◽  
Anna I. Ganyukova ◽  
Vyacheslav Yurchenko ◽  
Alexei Y. Kostygov

Parasitology ◽  
1998 ◽  
Vol 116 (S1) ◽  
pp. S47-S55 ◽  
Author(s):  
J. C. Koella ◽  
P. Agnew ◽  
Y. Michalakis

SummarySeveral recent studies have discussed the interaction of host life-history traits and parasite life cycles. It has been observed that the life-history of a host often changes after infection by a parasite. In some cases, changes of host life-history traits reduce the costs of parasitism and can be interpreted as a form of resistance against the parasite. In other cases, changes of host life-history traits increase the parasite's transmission and can be interpreted as manipulation by the parasite. Alternatively, changes of host's life-history traits can also induce responses in the parasite's life cycle traits. After a brief review of recent studies, we treat in more detail the interaction between the microsporidian parasite Edhazardia aedis and its host, the mosquito Aedes aegypti. We consider the interactions between the host's life-history and parasite's life cycle that help shape the evolutionary ecology of their relationship. In particular, these interactions determine whether the parasite is benign and transmits vertically or is virulent and transmits horizontally.Key words: host-parasite interaction, life-history, life cycle, coevolution.


1980 ◽  
Vol 54 (1) ◽  
pp. 55-73 ◽  
Author(s):  
J. F. A. Sprent

ABSTRACTAscaridoid nematodes reported from terrestrial and freshwater chelonians are described under two monotypic genera, Angusticaecum and a new genus Krefftascaris respectively. The former genus contain A. holopterum (Rodolphi, 1819) Baylis, 1920 [synonym A. brevispiculum Chapin, 1924], reported in the natural state from testudinid and emydid tortoises in Europe, U.S.S.R., Iran, Brazil and North Africa. Teh latter genus contains a new species, K. parmenteri, reported from chelid freshwater turtles in Eastern Australia. It is concluded that the former is most closely related to species in other genera in terrestrial reptiles, whereas the latter is closest to Gedoelstascaris spp. in crocodilians. Host-parasite relationships over evolutionary time between ascaridoids and chelonians are discussed.


Parasitology ◽  
2012 ◽  
Vol 139 (10) ◽  
pp. 1346-1360 ◽  
Author(s):  
KIRILL V. GALAKTIONOV ◽  
ISABEL BLASCO-COSTA ◽  
PETER D. OLSON

SUMMARYThe ‘pygmaeus’ microphallids (MPG) are a closely related group of 6 digenean (Platyhelminthes: Trematoda) Microphallus species that share a derived 2-host life cycle in which metacercariae develop inside daughter sporocysts in the intermediate host (intertidal and subtidal gastropods, mostly of the genus Littorina) and are infective to marine birds (ducks, gulls and waders). Here we investigate MPG transmission patterns in coastal ecosystems and their diversification with respect to historical events, host switching and host-parasite co-evolution. Species phylogenies and phylogeographical reconstructions are estimated on the basis of 28S, ITS1 and ITS2 rDNA data and we use a combination of analyses to test the robustness and stability of the results, and the likelihood of alternative biogeographical scenarios. Results demonstrate that speciation within the MPG was not associated with co-speciation with either the first intermediate or final hosts, but rather by host-switching events coincident with glacial cycles in the Northern Hemisphere during the late Pliocene/Pleistocene. These resulted in the expansion of Pacific biota into the Arctic-North Atlantic and periodic isolation of Atlantic and Pacific populations. Thus we hypothesize that contemporary species of MPG and their host associations resulted from fragmentation of populations in regional refugia during stadials, and their subsequent range expansion from refugial centres during interstadials.


2020 ◽  
Author(s):  
Xitan Hou ◽  
Zhenkui Qin ◽  
Maokai Wei ◽  
Zhong Fu ◽  
Ruonan Liu ◽  
...  

Abstract Background: In marine invertebrate life cycles, which often consist of planktonic larval and benthonic adult stages, settlement of the free-swimming larva to the sea floor in response to environmental cues is a key life cycle transition. Settlement is regulated by a specialized sensory–neurosecretory system, the larval apical organ. The neuroendocrine mechanisms through which the apical organ transduces environmental cues into behavioral responses during settlement are not fully understood yet.Results: In this study, a total of 54 neuropeptide precursors (pNPs) were identified in the Urechis unicinctus larva and adult transcriptome databases using local BLAST and de novo prediction, of which 10 pNPs belonging to the ancient eumetazoa, 23 pNPs belonging to the ancient bilaterian, 3 pNPs belonging to the ancient protostome, 10 pNPs exclusive in lophotrochozoa, 3 pNPs exclusive in annelid, and 5 pNPs only found in U. unicinctus. Furthermore, four pNPs (MIP, FRWamide, FxFamide and FILamide) which may be associated with the settlement and metamorphosis of U. unicinctus larvae were verified successfully by qRT-PCR. Whole-mount in situ hybridization results showed that all the four pNPs were expressed in the region of the apical organ of the larva, and the positive signals were also detected in the ciliary band and abdomen chaetae. We speculated that these pNPs may regulate the movement of larval cilia and chaeta by sensing external attachment signals.Conclusions: This study represents the first comprehensive identification of neuropeptides in Echiura, and would contribute to a complete understanding on the roles of various neuropeptides in larval settlement of most marine benthonic invertebrates.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jacob R. Hambrook ◽  
Patrick C. Hanington

Human schistosomes combat the unique immune systems of two vastly different hosts during their indirect life cycles. In gastropod molluscs, they face a potent innate immune response composed of variable immune recognition molecules and highly phagocytic hemocytes. In humans, a wide variety of innate and adaptive immune processes exist in proximity to these parasites throughout their lifespan. To survive and thrive as the second most common parasitic disease in humans, schistosomes have evolved many techniques to avoid and combat these targeted host responses. Among these techniques are molecular mimicry of host antigens, the utilization of an immune resistant outer tegument, the secretion of several potent proteases, and targeted release of specific immunomodulatory factors affecting immune cell functions. This review seeks to describe these key immune evasion mechanisms, among others, which schistosomes use to survive in both of their hosts. After diving into foundational observational studies of the processes mediating the establishment of schistosome infections, more recent transcriptomic and proteomic studies revealing crucial components of the host/parasite molecular interface are discussed. In order to combat this debilitating and lethal disease, a comprehensive understanding of schistosome immune evasion strategies is necessary for the development of novel therapeutics and treatment plans, necessitating the discussion of the numerous ways in which these parasitic flatworms overcome the immune responses of both hosts.


2020 ◽  
Vol 48 (6) ◽  
pp. 2437-2455
Author(s):  
Jocelyn A. Hammond ◽  
Emma A. Gordon ◽  
Kayla M. Socarras ◽  
Joshua Chang Mell ◽  
Garth D. Ehrlich

The principle of monoclonality with regard to bacterial infections was considered immutable prior to 30 years ago. This view, espoused by Koch for acute infections, has proven inadequate regarding chronic infections as persistence requires multiple forms of heterogeneity among the bacterial population. This understanding of bacterial plurality emerged from a synthesis of what-were-then novel technologies in molecular biology and imaging science. These technologies demonstrated that bacteria have complex life cycles, polymicrobial ecologies, and evolve in situ via the horizontal exchange of genic characters. Thus, there is an ongoing generation of diversity during infection that results in far more highly complex microbial communities than previously envisioned. This perspective is based on the fundamental tenet that the bacteria within an infecting population display genotypic diversity, including gene possession differences, which result from horizontal gene transfer mechanisms including transformation, conjugation, and transduction. This understanding is embodied in the concepts of the supragenome/pan-genome and the distributed genome hypothesis (DGH). These paradigms have fostered multiple researches in diverse areas of bacterial ecology including host–bacterial interactions covering the gamut of symbiotic relationships including mutualism, commensalism, and parasitism. With regard to the human host, within each of these symbiotic relationships all bacterial species possess attributes that contribute to colonization and persistence; those species/strains that are pathogenic also encode traits for invasion and metastases. Herein we provide an update on our understanding of bacterial plurality and discuss potential applications in diagnostics, therapeutics, and vaccinology based on perspectives provided by the DGH with regard to the evolution of pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document