scholarly journals Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications

2015 ◽  
Vol 81 (3) ◽  
Author(s):  
H. Heumann ◽  
J. Blum ◽  
C. Boulbe ◽  
B. Faugeras ◽  
G. Selig ◽  
...  

We present a comprehensive survey of various computational methods in CEDRES++ (Couplage Equilibre Diffusion Résistive pour l'Etude des Scénarios) for finding equilibria of toroidal plasma. Our focus is on free-boundary plasma equilibria, where either poloidal field coil currents or the temporal evolution of voltages in poloidal field circuit systems are given data. Centered around a piecewise linear finite element representation of the poloidal flux map, our approach allows in large parts the use of established numerical schemes. The coupling of a finite element method and a boundary element method gives consistent numerical solutions for equilibrium problems in unbounded domains. We formulate a new Newton method for the discretized nonlinear problem to tackle the various nonlinearities, including the free plasma boundary. The Newton method guarantees fast convergence and is the main building block for the inverse equilibrium problems that we can handle in CEDRES++ as well. The inverse problems aim at finding either poloidal field coil currents that ensure a desired shape and position of the plasma or at finding the evolution of the voltages in the poloidal field circuit systems that ensure a prescribed evolution of the plasma shape and position. We provide equilibrium simulations for the tokamaks ITER and WEST to illustrate the performance of CEDRES++ and its application areas.

Author(s):  
Sundar Namala ◽  
Rizwan Uddin

Abstract Nodal integral methods (NIM) are a class of efficient coarse mesh methods that use transverse averaging to reduce the governing partial differential equation(s) (PDE) into a set of ordinary differential equations (ODE). The standard application of NIM is restricted to domains that have boundaries parallel to one of the coordinate axes/palnes (in 2D/3D). The hybrid nodal-integral/finite-element method (NI-FEM) reported here has been developed to extend the application of NIM to arbitrary domains. NI-FEM is based on the idea that the interior region and the regions with boundaries parallel to the coordinate axes (2D) or coordinate planes (3D) can be solved using NIM, and the rest of the domain can be discretized and solved using FEM. The crux of the hybrid NI-FEM is in developing interfacial conditions at the common interfaces between the NIM regions and FEM regions. We here report the development of hybrid NI-FEM for the time-dependent convection-diffusion equation (CDE) in arbitrary domains. Resulting hybrid numerical scheme is implemented in a parallel framework in Fortran and solved using PETSc. The preliminary approach to domain decomposition is also discussed. Numerical solutions are compared with exact solutions, and the scheme is shown to be second order accurate in both space and time. The order of approximations used for the development of the scheme are also shown to be second order. The hybrid method is more efficient compared to standalone conventional numerical schemes like FEM.


Author(s):  
Georgios Akrivis ◽  
Buyang Li

Abstract The implicit Euler scheme for nonlinear partial differential equations of gradient flows is linearized by Newton’s method, discretized in space by the finite element method. With two Newton iterations at each time level, almost optimal order convergence of the numerical solutions is established in both the $L^q(\varOmega )$ and $W^{1,q}(\varOmega )$ norms. The proof is based on techniques utilizing the resolvent estimate of elliptic operators on $L^q(\varOmega )$ and the maximal $L^p$-regularity of fully discrete finite element solutions on $W^{-1,q}(\varOmega )$.


2019 ◽  
Vol 19 (07) ◽  
pp. 1950081 ◽  
Author(s):  
Zhenhuan Zhou ◽  
Junhai Fan ◽  
C. W. Lim ◽  
Dalun Rong ◽  
Xinsheng Xu

A novel size-dependent coupled symplectic and finite element method (FEM) is proposed to study the steady-state forced vibration of built-up nanobeam system resting on elastic foundations. The overall system is modeled as a combination of nonlocal Timoshenko beams. A new analytical subsystem modeling with formulation and another numerical subsystem modeling are developed and discussed. In the analytical subsystem model, the uniform nanobeams are modeled and solved by a new approach based on a series of analytical symplectic eigensolutions. The numerical subsystem model applies a nonlocal FEM to solve nonuniform nanobeams. Analytical and numerical solutions are presented, and a proper comparison between the two approaches is established. Comprehensive and accurate numerical result is subsequently presented to illustrate the accuracy and reliability of the coupled method. The new results established are expected to have reference values for future studies.


2013 ◽  
Vol 18 (2) ◽  
pp. 260-273 ◽  
Author(s):  
Alaattin Esen ◽  
Yusuf Ucar ◽  
Nuri Yagmurlu ◽  
Orkun Tasbozan

In the present study, numerical solutions of the fractional diffusion and fractional diffusion-wave equations where fractional derivatives are considered in the Caputo sense have been obtained by a Galerkin finite element method using quadratic B-spline base functions. For the fractional diffusion equation, the L1 discretizaton formula is applied, whereas the L2 discretizaton formula is applied for the fractional diffusion-wave equation. The error norms L 2 and L ∞ are computed to test the accuracy of the proposed method. It is shown that the present scheme is unconditionally stable by applying a stability analysis to the approximation obtained by the proposed scheme.


2020 ◽  
Vol 37 (7) ◽  
pp. 2439-2466
Author(s):  
Mateus Rauen ◽  
Roberto Dalledone Machado ◽  
Marcos Arndt

Purpose This study aims to present a new hybrid formulation based on non-uniform rational b-splines functions and enrichment strategies applied to free and forced vibration of straight bars and trusses. Design/methodology/approach Based on the idea of enrichment from generalized finite element method (GFEM)/extended finite element method (XFEM), an extended isogeometric formulation (partition of unity isogeometric analysis [PUIGA]) is conceived. By numerical examples the methods are tested and compared with isogeometric analysis, finite element method and GFEM in terms of convergence, error spectrum, conditioning and adaptivity capacity. Findings The results show a high convergence rate and accuracy for PUIGA and the advantage of input enrichment functions and material parameters on parametric space. Originality/value The enrichment strategies demonstrated considerable improvements in numerical solutions. The applications of computer-aided design mapped enrichments applied to structural dynamics are not known in the literature.


2019 ◽  
Vol 11 (07) ◽  
pp. 1950062
Author(s):  
S. Farmani ◽  
M. Ghaeini-Hessaroeyeh ◽  
S. Hamzehei-Javaran

A new finite element approach is developed here for the modeling of boundary value problems. In the present model, the finite element method (FEM) is reformulated by new shape functions called spherical Hankel shape functions. The mentioned functions are derived from the first and second kind of Bessel functions that have the properties of both of them. These features provide an improvement in the solution accuracy with number of elements which are equal or lower than the ones used by the classic FEM. The efficiency and accuracy of the suggested model in the potential problems are examined by several numerical examples. Then, the obtained results are compared with the analytical and numerical solutions. The comparisons indicate the high accuracy of the present method.


2014 ◽  
Vol 597 ◽  
pp. 308-311
Author(s):  
Qing Qing Wu ◽  
Min Qing Wang

Damping property analysis of laminated composite structures have been done based on the complex stiffness method (CSM). In view of laminated plates with viscoelastic material cores, investigation is conducted using CSM and numerical methods of finite element method and spectral finite element method. Simulation results show that analytical solutions by CSM are in good agreement with the two kinds of numerical solutions. The proposed analytical method is well suited to calculate and optimize the damping property of laminated structures especially composites with constrained layer damping treatment.


Sign in / Sign up

Export Citation Format

Share Document