scholarly journals Particle acceleration in relativistic magnetic flux-merging events

2017 ◽  
Vol 83 (6) ◽  
Author(s):  
Maxim Lyutikov ◽  
Lorenzo Sironi ◽  
Serguei S. Komissarov ◽  
Oliver Porth

Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically dominated plasma. Mergers of current-carrying flux tubes (exemplified by the two-dimensional ‘ABC’ structures) and zero-total-current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse, particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization $\unicode[STIX]{x1D70E}$. For plasma magnetization $\unicode[STIX]{x1D70E}\leqslant 10^{2}$ the spectrum power-law index is $p>2$; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, $\unicode[STIX]{x1D70E}\geqslant 10^{2}$, the spectra are hard, $p<2$, yet the maximal energy $\unicode[STIX]{x1D6FE}_{\text{max}}$ can still exceed the average magnetic energy per particle, ${\sim}\unicode[STIX]{x1D70E}$, by orders of magnitude (if $p$ is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.

2013 ◽  
Vol 9 (S302) ◽  
pp. 126-129
Author(s):  
Khalil Daiffallah

AbstractMotivated by the problem of local solar subsurface magnetic structure, we have used numerical simulations to investigate the propagation of waves through monolithic magnetic flux tubes of different sizes. A cluster model can be a good approximation to simulate sunspots as well as solar plage regions which are composed of an ensemble of compactly packed thin flux tubes. Simulations of this type are powerful tools to probe the structure and the dynamics of various solar features which are directly related to solar magnetic field activity.


2004 ◽  
Vol 22 (1) ◽  
pp. 213-236 ◽  
Author(s):  
O. L. Vaisberg ◽  
L. A. Avanov ◽  
T. E. Moore ◽  
V. N. Smirnov

Abstract. We analyze two LLBL crossings made by the Interball-Tail satellite under a southward or variable magnetosheath magnetic field: one crossing on the flank of the magnetosphere, and another one closer to the subsolar point. Three different types of ion velocity distributions within the LLBL are observed: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counter-streaming components of magnetosheath-type, and (c) distributions with three components, one of which has nearly zero parallel velocity and two counter-streaming components. Only the (a) type fits to the single magnetic flux tube formed by reconnection between the magnetospheric and magnetosheath magnetic fields. We argue that two counter-streaming magnetosheath-like ion components observed by Interball within the LLBL cannot be explained by the reflection of the ions from the magnetic mirror deeper within the magnetosphere. Types (b) and (c) ion velocity distributions would form within spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and from magnetospheric plasma. The shapes of ion velocity distributions and their evolution with decreasing number density in the LLBL indicate that a significant part of the LLBL is located on magnetic field lines of long spiral flux tube islands at the magnetopause, as has been proposed and found to occur in magnetopause simulations. We consider these observations as evidence for multiple reconnection Χ-lines between magnetosheath and magnetospheric flux tubes. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions)


1993 ◽  
Vol 141 ◽  
pp. 143-146
Author(s):  
K. Petrovay ◽  
G. Szakály

AbstractThe presently widely accepted view that the solar dynamo operates near the base of the convective zone makes it difficult to relate the magnetic fields observed in the solar atmosphere to the fields in the dynamo layer. The large amount of observational data concerning photospheric magnetic fields could in principle be used to impose constraints on dynamo theory, but in order to infer these constraints the above mentioned “missing link” between the dynamo and surface fields should be found. This paper proposes such a link by modeling the passive vertical transport of thin magnetic flux tubes through the convective zone.


2018 ◽  
Vol 14 (S345) ◽  
pp. 295-296
Author(s):  
Sergey A. Khaibrakhmanov ◽  
Alexander E. Dudorov ◽  
Andrey M. Sobolev

AbstractWe investigate dynamics of slender magnetic flux tubes (MFT) in the accretion disks of young stars. Simulations show that MFT rise from the disk and can accelerate to 20-30 km/s causing periodic outflows. Magnetic field of the disk counteracts the buoyancy, and the MFT oscillate near the disk’s surface with periods of 10-100 days. We demonstrate that rising and oscillating MFT can cause the IR-variability of the accretion disks of young stars.


1996 ◽  
Vol 176 ◽  
pp. 201-216
Author(s):  
Sami K. Solanki

The magnetic field of the Sun is mainly concentrated into intense magnetic flux tubes having field strengths of the order of 1 kG. In this paper an overview is given of the thermal and magnetic properties of these flux tubes, which are known to exhibit a large range in size, from the smallest magnetic elements to sunspots. Differences and similarities between the largest and smallest features are stressed. Some thoughts are also presented on how the properties of magnetic flux tubes are expected to scale from the solar case to that of solar-like stars. For example, it is pointed out that on giants and supergiants turbulent pressure may dominate over gas pressure as the main confining agent of the magnetic field. Arguments are also presented in favour of a highly complex magnetic geometry on very active stars. Thus the very large starspots seen in Doppler images probably are conglomerates of smaller (but possibly still sizable) spots.


2010 ◽  
Vol 28 (6) ◽  
pp. 1273-1288 ◽  
Author(s):  
E. E. Grigorenko ◽  
T. M. Burinskaya ◽  
M. Shevelev ◽  
J.-A. Sauvaud ◽  
L. M. Zelenyi

Abstract. We present a comprehensive analysis of magnetic field and plasma data measured in the course of 170 crossings of the lobeward edge of Plasma Sheet Boundary Layer (PSBL) in the Earth's magnetotail by Cluster spacecraft. We found that large-scale fluctuations of the magnetic flux tubes have been registered during intervals of propagation of high velocity field-aligned ions. The observed kink-like oscillations propagate earthward along the main magnetic field with phase velocities of the order of local Alfvén velocity and have typical wavelengths ~5–20 RE, and frequencies of the order of 0.004–0.02 Hz. The oscillations of PSBL magnetic flux tubes are manifested also in a sudden increase of drift velocity of cold lobe ions streaming tailward. Since in the majority of PSBL crossings in our data set, the densities of currents corresponding to electron-ion relative drift have been low, the investigation of Kelvin-Helmholtz (K-H) instability in a bounded flow sandwiched between the plasma sheet and the lobe has been performed to analyze its relevance to generation of the observed ultra-low frequency oscillations with wavelengths much larger than the flow width. The calculations have shown that, when plasma conditions are favorable for the excitation of K-H instability at least at one of the flow boundaries, kink-like ultra-low frequency waves, resembling the experimentally observed ones, could become unstable and efficiently develop in the system.


2019 ◽  
Vol 489 (1) ◽  
pp. 28-35
Author(s):  
Frederick A Gent ◽  
Ben Snow ◽  
Viktor Fedun ◽  
Robertus Erdélyi

ABSTRACT The magnetic network extending from the photosphere (solar radius ≃ R⊙) to the lower corona ($\mathrm{ R}_\odot +10\, {\rm Mm}$) plays an important role in the heating mechanisms of the solar atmosphere. Here we develop further the models of the authors with realistic open magnetic flux tubes, in order to model more complicated configurations. Closed magnetic loops and combinations of closed and open magnetic flux tubes are modelled. These are embedded within a stratified atmosphere, derived from observationally motivated semi-empirical and data-driven models subject to solar gravity and capable of spanning from the photosphere up into the chromosphere and lower corona. Constructing a magnetic field comprising self-similar magnetic flux tubes, an analytic solution for the kinetic pressure and plasma density is derived. Combining flux tubes of opposite polarity, it is possible to create a steady background magnetic field configuration, modelling a solar atmosphere exhibiting realistic stratification. The result can be applied to the Solar and Heliospheric Observatory Michelson Doppler Imager (SOHO/MDI), Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI) and other magnetograms from the solar surface, for which photospheric motions can be simulated to explore the mechanism of energy transport. We demonstrate this powerful and versatile method with an application to HMI data.


Sign in / Sign up

Export Citation Format

Share Document