scholarly journals Solar and stellar magnetic flux tubes

1996 ◽  
Vol 176 ◽  
pp. 201-216
Author(s):  
Sami K. Solanki

The magnetic field of the Sun is mainly concentrated into intense magnetic flux tubes having field strengths of the order of 1 kG. In this paper an overview is given of the thermal and magnetic properties of these flux tubes, which are known to exhibit a large range in size, from the smallest magnetic elements to sunspots. Differences and similarities between the largest and smallest features are stressed. Some thoughts are also presented on how the properties of magnetic flux tubes are expected to scale from the solar case to that of solar-like stars. For example, it is pointed out that on giants and supergiants turbulent pressure may dominate over gas pressure as the main confining agent of the magnetic field. Arguments are also presented in favour of a highly complex magnetic geometry on very active stars. Thus the very large starspots seen in Doppler images probably are conglomerates of smaller (but possibly still sizable) spots.

2016 ◽  
Vol 12 (S325) ◽  
pp. 59-62
Author(s):  
Olga Botygina ◽  
Mykola Gordovskyy ◽  
Vsevolod Lozitsky

AbstractThe structure of photospheric magnetic fields outside sunspots is investigated in three active regions using Hinode/Solar Optical Telescope(SOT) observations. We analyze Zeeman effect in FeI 6301.5 and FeI 6302.5 lines and determine the observed magnetic field value Beff for each of them. We find that the line ratio Beff(6301)/Beff(6302) is close to 1.3 in the range Beff < 0.2 kG, and close to 1.0 for 0.8 kG < Beff < 1.2 kG. We find that the observed magnetic field is formed by flux tubes with the magnetic field strengths 1.3 − 2.3 kG even in places with weak observed magnetic field fluxes. We also estimate the diameters of smallest magnetic flux tubes to be 15 − 20 km.


1980 ◽  
Vol 91 ◽  
pp. 291-294
Author(s):  
Takashi Sakurai

Now it is known that the solar corona consists of many loops which are believed to represent the structure of the magnetic field. Since the plasma is very tenuous in the corona, the equilibrium of the magnetic field is approximated by the force-free field:


1990 ◽  
Vol 138 ◽  
pp. 103-120
Author(s):  
S.K. Solanki

The empirically derived properties of magnetic flux tubes at both ends of the size spectrum, i.e. magnetic elements and sunspots, are reviewed. Emphasis is placed on quantitative results. The following parameters are discussed in greater detail: The strength and structure of the magnetic field, the temperature stratification and the structure of the velocity field.


1990 ◽  
Vol 138 ◽  
pp. 263-266
Author(s):  
John H. Thomas ◽  
Benjamin Montesinos

Siphon flows along arched, isolated magnetic flux tubes, connecting photospheric footpoints of opposite magnetic polarity, cause a significant increase in the magnetic field strength of the flux tube due to the decreased internal gas pressure associated with the flow (the Bernoulli effect). These siphon flows offer a possible mechanism for producing intense, inclined, small-scale magnetic structures in the solar photosphere.


2009 ◽  
Vol 5 (S264) ◽  
pp. 102-104 ◽  
Author(s):  
M. C. López Fuentes ◽  
C. H. Mandrini ◽  
P. Démoulin

AbstractPeculiar solar active regions (ARs), such as δ-islands and other high tilt bipoles, are commonly associated with the emergence of severely deformed magnetic flux tubes. Therefore, the study of these ARs provides valuable information on the origin and evolution of magnetic structures in the solar interior. Here, we infer the magnetic helicity properties of the flux tubes associated to a set of peculiar ARs by studying the evolution of photospheric magnetograms (SOHO/MDI) and coronal observations (SOHO/EIT and TRACE) in combination with force-free models of the magnetic field. We discuss how our results relate to different models of the evolution of emerging magnetic flux tubes.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust &amp; Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust &amp; Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2004 ◽  
Vol 22 (1) ◽  
pp. 213-236 ◽  
Author(s):  
O. L. Vaisberg ◽  
L. A. Avanov ◽  
T. E. Moore ◽  
V. N. Smirnov

Abstract. We analyze two LLBL crossings made by the Interball-Tail satellite under a southward or variable magnetosheath magnetic field: one crossing on the flank of the magnetosphere, and another one closer to the subsolar point. Three different types of ion velocity distributions within the LLBL are observed: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counter-streaming components of magnetosheath-type, and (c) distributions with three components, one of which has nearly zero parallel velocity and two counter-streaming components. Only the (a) type fits to the single magnetic flux tube formed by reconnection between the magnetospheric and magnetosheath magnetic fields. We argue that two counter-streaming magnetosheath-like ion components observed by Interball within the LLBL cannot be explained by the reflection of the ions from the magnetic mirror deeper within the magnetosphere. Types (b) and (c) ion velocity distributions would form within spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and from magnetospheric plasma. The shapes of ion velocity distributions and their evolution with decreasing number density in the LLBL indicate that a significant part of the LLBL is located on magnetic field lines of long spiral flux tube islands at the magnetopause, as has been proposed and found to occur in magnetopause simulations. We consider these observations as evidence for multiple reconnection Χ-lines between magnetosheath and magnetospheric flux tubes. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions)


1993 ◽  
Vol 141 ◽  
pp. 143-146
Author(s):  
K. Petrovay ◽  
G. Szakály

AbstractThe presently widely accepted view that the solar dynamo operates near the base of the convective zone makes it difficult to relate the magnetic fields observed in the solar atmosphere to the fields in the dynamo layer. The large amount of observational data concerning photospheric magnetic fields could in principle be used to impose constraints on dynamo theory, but in order to infer these constraints the above mentioned “missing link” between the dynamo and surface fields should be found. This paper proposes such a link by modeling the passive vertical transport of thin magnetic flux tubes through the convective zone.


Sign in / Sign up

Export Citation Format

Share Document