scholarly journals On the breakdown modes and parameter space of ohmic tokamak start-up

2018 ◽  
Vol 84 (5) ◽  
Author(s):  
Yanli Peng ◽  
Wei Jiang ◽  
Maria Elena Innocenti ◽  
Ya Zhang ◽  
Xiwei Hu ◽  
...  

Tokamak start-up is strongly dependent on the state of the initial plasma formed during plasma breakdown. We have investigated through numerical simulations the effects that the pre-filling pressure and induced electric field have on pure ohmic heating during the breakdown process. Three breakdown modes during the discharge are found, as a function of different initial parameters: no breakdown mode, successful breakdown mode and runaway mode. No breakdown mode often occurs with low electric field or high pre-filling pressure, while runaway electrons are usually easy to generate at high electric field or low pre-filling pressure (${<}1.33\times 10^{-4}$  Pa). The plasma behaviours and the physical mechanisms under the three breakdown modes are discussed. We have identified the electric field and pressure values at which the different modes occur. In particular, when the electric field is $0.3~\text{V}~\text{m}^{-1}$ (the value at which ITER operates), the pressure range for possible breakdown becomes narrow, which is consistent with Lloyd’s theoretical prediction. In addition, for $0.3~\text{V}~\text{m}^{-1}$, the optimal pre-filling pressure range obtained from our simulations is $1.33\times 10^{-3}\sim 2.66\times 10^{-3}$  Pa, in good agreement with ITER’s design. Besides, we also find that the Townsend discharge model does not appropriately describe the plasma behaviour during tokamak breakdown due to the presence of a toroidal field. Furthermore, we suggest three possible operation mechanisms for general start-up scenarios which could better control the breakdown phase.

1958 ◽  
Vol 36 (3) ◽  
pp. 255-270 ◽  
Author(s):  
P. A. Redhead

An approximate theory is developed of the breakdown characteristics of a coaxial diode in an axial magnetic field, taking into account the effects of elastic collisions. It is assumed that the electron moves in a constant electric field between collisions and thus the theory is valid only in the appropriate range of magnetic field and voltage. Estimates of transit time and of space-charge effects are also made. Measurements in the pressure range 10−3 to 10−9 mm. Hg are in general agreement with the theory.


2021 ◽  
Author(s):  
Egor Stadnichuk ◽  
Daria Zemlianskay ◽  
Victoria Efremova

&lt;p&gt;A possible mechanism responsible for Terrestrial Gamma-ray Flashes (TGFs) is feedback in the relativistic runaway electron avalanches (RREA) dynamics. In this research, a new way of RREAs self-sustaining is suggested. This self-sustaining feedback can be described in the following way. Let the thundercloud consist of two regions with the electric field so that runaway electrons accelerated in one region move in the direction of another one and vice versa. For instance, such an electric field structure might appear with one positive charge layer situated between two negative charge layers. In this system, the following feedback mechanism occurs. An RREA developing in one region will produce bremsstrahlung gamma-rays. These gamma-rays will propagate into another region and produce RREAs within it. These RREAs will develop backward and radiate gamma-rays, which will penetrate the first region, generating secondary RREAs. In this way, the primary avalanche reproduced itself by the gamma-ray exchange between two sideways oriented areas with the electric field. In this work, it is shown that the electric field values required for TGF generation by this mechanism are lower than values required in Relativistic Feedback Discharge Model.&lt;/p&gt;


2002 ◽  
Vol 1 (5) ◽  
pp. 319-327 ◽  
Author(s):  
M. P. Rols ◽  
M. Golzio ◽  
B. Gabriel ◽  
J. Teissié

Electric field pulses are a new approach for drug and gene delivery for cancer therapy. They induce a localized structural alteration of cell membranes. The associated physical mechanisms are well explained and can be safely controlled. A position dependent modulation of the membrane potential difference is induced when an electric field is applied to a cell. Electric field pulses with an overcritical intensity evoke a local membrane alteration. A free exchange of hydrophilic low molecular weight molecules takes place across the membrane. A leakage of cytosolic metabolites and a loading of polar drugs into the cytoplasm are obtained. The fraction of the cell surface which is competent for exchange is a function of the field intensity. The level of local exchange is strongly controlled by the pulse duration and the number of successive pulses. The permeabilised state is long lived. Its lifetime is under the control of the cumulated pulse duration. Cell viability can be preserved. Gene transfer is obtained but its mechanism is not a free diffusion. Plasmids are electrophoretically accumulated against the permeabilised cell surface and form aggregates due to the field effect. After the pulses, several steps follow: translocation to the cytoplasm, traffic to the nucleus and expression. Molecular structural and metabolic changes in cells remain mostly poorly understood. Nevertheless, while most studies were established on cells in culture ( in vitro), recent experiments show that similar effects are obtained on tissue ( in vivo). Transfer remains controlled by the physical parameters of the electrical treatment.


2012 ◽  
Vol 109 (8) ◽  
Author(s):  
A. V. Gurevich ◽  
G. A. Mesyats ◽  
K. P. Zybin ◽  
M. I. Yalandin ◽  
A. G. Reutova ◽  
...  

2017 ◽  
Vol 4 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Y. Guo ◽  
H. Zhang ◽  
Y. Yao ◽  
Q. Zhang ◽  
J. D. Yan

A high voltage gas blast circuit breaker relies on the high speed gas flow in a nozzle to remove the energy due to Ohmic heating at high current and to provide strong arc cooling during the current zero period to interrupt a fault current. The physical mechanisms that are responsible for the hugely different arc cooling capabilities of two gases (SF<sub>6</sub> and air) are studied in the present work and important gas material properties controlling the cooling strength identified.


2019 ◽  
Vol 47 (10) ◽  
pp. 4594-4598 ◽  
Author(s):  
Hamidreza Mirzaei ◽  
Reza Amrollahi ◽  
Davoud Iraji ◽  
Dariush Rostamifard
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document