scholarly journals Direct construction of optimized stellarator shapes. Part 2. Numerical quasisymmetric solutions

2019 ◽  
Vol 85 (1) ◽  
Author(s):  
Matt Landreman ◽  
Wrick Sengupta ◽  
Gabriel G. Plunk

Quasisymmetric stellarators are appealing intellectually and as fusion reactor candidates since the guiding-centre particle trajectories and neoclassical transport are isomorphic to those in a tokamak, implying good confinement. Previously, quasisymmetric magnetic fields have been identified by applying black-box optimization algorithms to minimize symmetry-breaking Fourier modes of the field strength $B$. Here, instead, we directly construct magnetic fields in cylindrical coordinates that are quasisymmetric to leading order in the distance from the magnetic axis, without using optimization. The method involves solution of a one-dimensional nonlinear ordinary differential equation, originally derived by Garren & Boozer (Phys. Fluids B, vol. 3, 1991, p. 2805). We demonstrate the usefulness and accuracy of this optimization-free approach by providing the results of this construction as input to the codes VMEC and BOOZ_XFORM, confirming the purity and scaling of the magnetic spectrum. The space of magnetic fields that are quasisymmetric to this order is parameterized by the magnetic axis shape along with three other real numbers, one of which reflects the on-axis toroidal current density, and another one of which is zero for stellarator symmetry. The method here could be used to generate good initial conditions for conventional optimization, and its speed enables exhaustive searches of parameter space.

2007 ◽  
Vol 14 (2) ◽  
pp. 181-192 ◽  
Author(s):  
Z. Sun ◽  
A. Tangborn ◽  
W. Kuang

Abstract. A one dimensional non-linear magneto-hydrodynamic (MHD) system has been introduced to test a sequential optimal interpolation assimilation technique that uses a Monte-Carlo method to calculate the forecast error covariance. An ensemble of 100 model runs with perturbed initial conditions are used to construct the covariance, and the assimilation algorithm is tested using Observation Simulation Experiments (OSE's). The system is run with a variety of observation types (magnetic and/or velocity fields) and a range of observation densities. The impact of cross covariances between velocity and magnetic fields is investigated by running the assimilation with and without these terms. Sets of twin experiments show that while observing both velocity and magnetic fields has the greatest positive impact on the system, observing the magnetic field alone can also effectively constrain the system. Observations of the velocity field are ineffective as a constraint on the magnetic field, even when observations are made at every point. The implications for geomagnetic data assimilation are discussed.


1969 ◽  
Vol 24 (10) ◽  
pp. 1449-1457
Author(s):  
H. Klingenberg ◽  
F. Sardei ◽  
W. Zimmermann

Abstract In continuation of the work on interaction between shock waves and magnetic fields 1,2 the experiments reported here measured the atomic and electron densities in the interaction region by means of an interferometric and a spectroscopic method. The transient atomic density was also calculated using a one-dimensional theory based on the work of Johnson3 , but modified to give an improved physical model. The experimental results were compared with the theoretical predictions.


1985 ◽  
Vol 40 (10) ◽  
pp. 959-967
Author(s):  
A. Salat

The equivalence of magnetic field line equations to a one-dimensional time-dependent Hamiltonian system is used to construct magnetic fields with arbitrary toroidal magnetic surfaces I = const. For this purpose Hamiltonians H which together with their invariants satisfy periodicity constraints have to be known. The choice of H fixes the rotational transform η(I). Arbitrary axisymmetric fields, and nonaxisymmetric fields with constant η(I) are considered in detail.Configurations with coinciding magnetic and current density surfaces are obtained. The approach used is not well suited, however, to satisfying the additional MHD equilibrium condition of constant pressure on magnetic surfaces.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Gabriel G. Plunk ◽  
Matt Landreman ◽  
Per Helander

The condition of omnigenity is investigated, and applied to the near-axis expansion of Garren & Boozer (Phys. Fluids B, vol. 3 (10), 1991a, pp. 2805–2821). Due in part to the particular analyticity requirements of the near-axis expansion, we find that, excluding quasi-symmetric solutions, only one type of omnigenity, namely quasi-isodynamicity, can be satisfied at first order in the distance from the magnetic axis. Our construction provides a parameterization of the space of such solutions, and the cylindrical reformulation and numerical method of Landreman & Sengupta (J. Plasma Phys., vol. 84 (6), 2018, 905840616); Landreman et al. (J. Plasma Phys., vol. 85 (1), 2019, 905850103), enables their efficient numerical construction.


1996 ◽  
Vol 10 (25) ◽  
pp. 3451-3459 ◽  
Author(s):  
ANTÓNIO M.R. CADILHE ◽  
VLADIMIR PRIVMAN

We introduce a model with conserved dynamics, where nearest neighbor pairs of spins ↑↓ (↓↑) can exchange to assume the configuration ↓↑ (↑↓), with rate β(α), through energy decreasing moves only. We report exact solution for the case when one of the rates, α or β, is zero. The irreversibility of such zero-temperature dynamics results in strong dependence on the initial conditions. Domain wall arguments suggest that for more general, finite-temperature models with steady states the dynamical critical exponent for the anisotropic spin exchange is different from the isotropic value.


2001 ◽  
Vol 7 (3) ◽  
pp. 253-282 ◽  
Author(s):  
Ch. Srinivasa Rao ◽  
P. L. Sachdev ◽  
Mythily Ramaswamy

The nonlinear ordinary differential equation resulting from the self-similar reduction of a generalized Burgers equation with nonlinear damping is studied in some detail. Assuming initial conditions at the origin we observe a wide variety of solutions – (positive) single hump, unbounded or those with a finite zero. The existence and nonexistence of positive bounded solutions with different types of decay (exponential or algebraic) to zero at infinity for specific parameter ranges are proved.


Sign in / Sign up

Export Citation Format

Share Document