scholarly journals Large gyro-orbit model of ion velocity distribution in plasma near a wall in a grazing-angle magnetic field

2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Alessandro Geraldini

A model is presented for the ion distribution function in a plasma at a solid target with a magnetic field $\boldsymbol {B}$ inclined at a small angle, $\alpha \ll 1$ (in radians), to the target. Adiabatic electrons are assumed, requiring $\alpha \gg \sqrt {Zm_{e}/m_{i}}$ , where $m_{e}$ and $m_{i}$ are the electron and ion mass, respectively, and $Z$ is the charge state of the ion. An electric field $\boldsymbol {E}$ is present to repel electrons, and so the characteristic size of the electrostatic potential $\phi$ is set by the electron temperature $T_{e}$ , $e\phi \sim T_{e}$ , where $e$ is the proton charge. An asymptotic scale separation between the Debye length $\lambda _{D} = \sqrt {\epsilon _0 T_{{e}} / e^{2} n_{{e}} }$ , the ion sound gyro-radius $\rho _{s} = \sqrt { m_{i} ( ZT_{e} + T_{i} ) } / (ZeB)$ and the size of the collisional region $d_{c} = \alpha \lambda _{\textrm {mfp}}$ is assumed, $\lambda _{D} \ll \rho _{s} \ll d_{c}$ . Here $\epsilon _0$ is the permittivity of free space, $n_{e}$ is the electron density, $T_{i}$ is the ion temperature, $B= |\boldsymbol {B}|$ and $\lambda _{\textrm {mfp}}$ is the collisional mean free path of an ion. The form of the ion distribution function is assumed at distances $x$ from the wall such that $\rho _{s} \ll x \ll d_{c}$ , that is, collisions are not treated. A self-consistent solution of the electrostatic potential for $x \sim \rho _{s}$ is required to solve for the quasi-periodic ion trajectories and for the ion distribution function at the target. The large gyro-orbit model presented here allows to bypass the numerical solution of $\phi (x)$ and results in an analytical expression for the ion distribution function at the target. It assumes that $\tau =T_{i}/(ZT_{e})\gg 1$ , and ignores the electric force on the quasi-periodic ion trajectory until close to the target. For $\tau \gtrsim 1$ , the model provides an extremely fast approximation to energy–angle distributions of ions at the target. These can be used to make sputtering predictions.

2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Alessandro Geraldini ◽  
F. I. Parra ◽  
F. Militello

The magnetic presheath is a boundary layer occurring when magnetized plasma is in contact with a wall and the angle $\unicode[STIX]{x1D6FC}$ between the wall and the magnetic field $\boldsymbol{B}$ is oblique. Here, we consider the fusion-relevant case of a shallow-angle, $\unicode[STIX]{x1D6FC}\ll 1$ , electron-repelling sheath, with the electron density given by a Boltzmann distribution, valid for $\unicode[STIX]{x1D6FC}/\sqrt{\unicode[STIX]{x1D70F}+1}\gg \sqrt{m_{\text{e}}/m_{\text{i}}}$ , where $m_{\text{e}}$ is the electron mass, $m_{\text{i}}$ is the ion mass, $\unicode[STIX]{x1D70F}=T_{\text{i}}/ZT_{\text{e}}$ , $T_{\text{e}}$ is the electron temperature, $T_{\text{i}}$ is the ion temperature and $Z$ is the ionic charge state. The thickness of the magnetic presheath is of the order of a few ion sound Larmor radii $\unicode[STIX]{x1D70C}_{\text{s}}=\sqrt{m_{\text{i}}(ZT_{\text{e}}+T_{\text{i}})}/ZeB$ , where e is the proton charge and $B=|\boldsymbol{B}|$ is the magnitude of the magnetic field. We study the dependence on $\unicode[STIX]{x1D70F}$ of the electrostatic potential and ion distribution function in the magnetic presheath by using a set of prescribed ion distribution functions at the magnetic presheath entrance, parameterized by $\unicode[STIX]{x1D70F}$ . The kinetic model is shown to be asymptotically equivalent to Chodura’s fluid model at small ion temperature, $\unicode[STIX]{x1D70F}\ll 1$ , for $|\text{ln}\,\unicode[STIX]{x1D6FC}|>3|\text{ln}\,\unicode[STIX]{x1D70F}|\gg 1$ . In this limit, despite the fact that fluid equations give a reasonable approximation to the potential, ion gyro-orbits acquire a spatial extent that occupies a large portion of the magnetic presheath. At large ion temperature, $\unicode[STIX]{x1D70F}\gg 1$ , relevant because $T_{\text{i}}$ is measured to be a few times larger than $T_{\text{e}}$ near divertor targets of fusion devices, ions reach the Debye sheath entrance (and subsequently the wall) at a shallow angle whose size is given by $\sqrt{\unicode[STIX]{x1D6FC}}$ or $1/\sqrt{\unicode[STIX]{x1D70F}}$ , depending on which is largest.


2007 ◽  
Vol 73 (6) ◽  
pp. 981-992 ◽  
Author(s):  
O. A. POKHOTELOV ◽  
O.G. ONISHCHENKO ◽  
M. A. BALIKHIN ◽  
L. STENFLO ◽  
P. K. SHUKLA

AbstractThe nonlinear theory of large-amplitude magnetosonic (MS) waves in highβ space plasmas is revisited. It is shown that solitary waves can exist in the form of ‘bright’ or ‘dark’ solitons in which the magnetic field is increased or decreased relative to the background magnetic field. This depends on the shape of the equilibrium ion distribution function. The basic parameter that controls the nonlinear structure is the wave dispersion, which can be either positive or negative. A general dispersion relation for MS waves propagating perpendicularly to the external magnetic field in a plasma with an arbitrary velocity distribution function is derived.It takes into account general plasma equilibria, such as the Dory–Guest–Harris (DGH) or Kennel–Ashour-Abdalla (KA) loss-cone equilibria, as well as distributions with a power-law velocity dependence that can be modelled by κdistributions. It is shown that in a bi-Maxwellian plasma the dispersion is negative, i.e. the phase velocity decreases with an increase of the wavenumber. This means that the solitary solution in this case has the form of a ‘bright’ soliton with the magnetic field increased. On the contrary, in some non-Maxwellian plasmas, such as those with ring-type ion distributions or DGH plasmas, the solitary solution may have the form of a magnetic hole. The results of similar investigations based on nonlinear Hall–MHD equations are reviewed. The relevance of our theoretical results to existing satellite wave observations is outlined.


2021 ◽  
Author(s):  
Andrey Fedorov ◽  
Philippe Louarn ◽  
Christopher Owen ◽  
Lubomir Prech ◽  
Timothy Horbury ◽  
...  

<p>During 27th September 2020 NASA Parker Solar Probe (PSP) and ESA-NASA Solar Orbiter (SolO) have been located around the same Carrington longitude and their latitudinal separation was very small as well. Solar wind plasma and magnetic field data obtained throughout this time interval  allows to consider that sometimes the solar wind, observed by both spacecrafts, originates from the same coronal hole region. Inside these time intervals the SolO radial magnetic field experiences several short variations similar to the "switchbacks" regularly observed by PSP. We used the SolO SWA-PAS proton analyzer data to analyze the ion distribution function variations inside such switchback-like events to understand if such events are really "remains" of the alfvenic structures observed below 60 Rs.</p>


One may say that prior to the introduction of the Fermi-Dirac statistics into the theory of metallic conduction and allied phenomena a general mathematical method of attack on the various problems had been developed which necessarily still forms the basis of the modern treatment; but nevertheless in most cases the older theory had little success in predicting the order of magnitude, and in some cases, even the qualitative features of the various effects. However, the ground had been well prepared, so that as soon as it was realized that the electrons in a metal did not really obey the Maxwell but the Fermi-Dirac statistics, the mere introduction of the latter distribution function in the place of the former in the classical equations proved sufficient to clear away many of the old difficulties. Since the appearance of Sommerfeld’s paper in 1928 the first order effects have received on the whole a satisfactory explanation. In the case of the second order effects, however— and it is with one of these that the present paper deals—there are still very considerable difficulties to be faced. The problem of the change of resistance of a metal in a magnetic field has been treated by Sommerfeld, making use of a method which was originally developed by Gans. The calculations follow closely the classical treatment of Lorentz in that the mean free path of an electron is introduced phenomenologically as a parameter to be determined from the known experimental value of the conductivity. In the classical theory one pictures the process as follows. The metal is regarded as having a regular three-dimensional lattice structure with the metallic ions situated at the lattice points. It is further supposed that there are a certain number of conduction electrons, which might well correspond with the valency electrons, and that the assembly of conduction electrons obeys the classical distribution law. When an electric field is applied in a given direction the electrons are accelerated and experience elastic collisions with the metallic ions. Finally an equilibrium state is reached in which the number of electrons entering a given velocity range in unit time is just equal to the number ejected by collisions, and the mathematical expression of this state takes the form of an integral equation which must be solved to find the change in the original distribution function due to the applied field. From the change in the distribution function the conductivity is calculated. In the semi-classical calculations of Sommerfeld the model is the same except that the Fermi-Dirac statistics are used instead of the Max-wellian. If one compares the value of the conductivity, thus obtained, with the experimental value, one obtains a mean free path which is about a hundred times greater than the lattice spacing. This large value is not very plausible on classical ideas; but is readily understandable on wave mechanical principles.


1995 ◽  
Vol 53 (1) ◽  
pp. 3-23 ◽  
Author(s):  
B. Weyssow

The distribution function of the minority ions during ion-cyclotron heating is calculated from a kinetic equation composed of a Landau collision term and a surface-averaged quasi-linear heating term. The kinetic equation is solved by a moment method in which the minority-ion distribution function is expanded in irreducible tensorial Hermite polynomials. The coefficients of the expansion are shown to be solutions of a system of coupled algebraic equations, and the effective minority-ion temperature is deduced from a compatibility constraint. The latter equation is in general too complicated to be solved analytically. The distribution function obtained here is therefore a semi-analytical result.


2020 ◽  
Vol 10 (17) ◽  
pp. 5727 ◽  
Author(s):  
Guillermo Fernando Regodón ◽  
Juan Manuel Díaz-Cabrera ◽  
José Ignacio Fernández Palop ◽  
Jerónimo Ballesteros

This paper presents an experimentally observed transition from the validity of the radial theories to the validity of the orbital theories that model the ion current collected by a cylindrical Langmuir probe immersed in low-pressure, low-temperature helium plasma when it is negatively biased with respect to the plasma potential, as a function of the positive ion-neutral collision mean free path to the Debye length ratio Λ=λ+/λD. The study has been also conducted on argon and neon plasmas, which allows a comparison based on the mass of the ions, although no transition has been observed for these gases. As the radial or orbital behavior of the ions is essential to establish the validity of the different sheath theories, a theoretical analysis of such a transition not only as a function of the parameters Λ and β=T+/Te, T+ and Te being the positive ion and electron temperature, respectively, but also as a function of the ion mass is provided. This study allows us to recognize the importance of the mass of the ion as the parameter that explains the transition in helium plasmas. Motivated by these theoretical arguments, a novel set of measurements has been performed to study the relationship between the Λ and β parameters in the transition that demonstrate that the effect of the ion mean free path cannot be completely ignored and also that its influence on the ion current collected by the probe is less important than the effect of the ion temperature.


1967 ◽  
Vol 45 (9) ◽  
pp. 3055-3064 ◽  
Author(s):  
D. J. Loughran ◽  
L. Schott ◽  
H. M. Skarsgard

An investigation is presented of two different probes, of the magnetic analyzer type, in which the magnetic field used for analysis of the particle orbits is also present in the plasma. Both probes employ a current collector whose distance from the aperture plane is adjustable. One probe (the charge-selective probe) collects charged particles of one sign, while theother (the charge-insensitive probe) collects particles of both signs. Assuming a Maxwell–Boltzmann distribution of electrons, the current collection characteristics are calculated for each probe. The use of these current characteristics for the measurement of the electron temperature is discussed. A procedure is also given for obtaining the mean electron velocity perpendicular to the magnetic field in the case of a non-Maxwellian velocity distribution. Finally, methods for measuring the ion temperature are presented for the special case of a small Debye length compared with the ion Larmor radius.


1985 ◽  
Vol 34 (3) ◽  
pp. 467-479 ◽  
Author(s):  
K. Akimoto ◽  
K. Papadopoulos ◽  
D. Winske

A ring distribution of ions in velocity space can generate electrostatic waves which propagate predominantly along an ambient magnetic field at frequencies comparable with the ion plasma frequency. A dispersion equation which accounts for these waves is presented, and solved analytically and numerically. It was found that ion-acoustic-like waves are excited in a plasma even if the electron temperature is comparable with the ion temperature under the assumption of an anisotropic ion distribution.


2019 ◽  
Vol 85 (1) ◽  
Author(s):  
Andréas Sundström ◽  
James Juno ◽  
Jason M. TenBarge ◽  
István Pusztai

In strictly collisionless electrostatic shocks, the ion distribution function can develop discontinuities along phase-space separatrices, due to partial reflection of the ion population. In this paper, we depart from the strictly collisionless regime and present a semi-analytical model for weakly collisional kinetic shocks. The model is used to study the effect of small but finite collisionalities on electrostatic shocks, and they are found to smooth out these discontinuities into growing boundary layers. More importantly, ions diffuse into and accumulate in the previously empty regions of phase space, and, by upsetting the charge balance, lead to growing downstream oscillations of the electrostatic potential. We find that the collisional age of the shock is the more relevant measure of the collisional effects than the collisionality, where the former can become significant during the lifetime of the shock, even for weak collisionalities.


Sign in / Sign up

Export Citation Format

Share Document