Σ2-collection and the infinite injury priority method

1988 ◽  
Vol 53 (1) ◽  
pp. 212-221 ◽  
Author(s):  
Michael E. Mytilinaios ◽  
Theodore A. Slaman

AbstractWe show that the existence of a recursively enumerable set whose Turing degree is neither low nor complete cannot be proven from the basic axioms of first order arithmetic (P−) together with Σ2-collection (BΣ2). In contrast, a high (hence, not low) incomplete recursively enumerable set can be assembled by a standard application of the infinite injury priority method. Similarly, for each n, the existence of an incomplete recursively enumerable set that is neither lown nor highn-1, while true, cannot be established in P− + BΣn+1. Consequently, no bounded fragment of first order arithmetic establishes the facts that the highn and lown jump hierarchies are proper on the recursively enumerable degrees.

1968 ◽  
Vol 33 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Jens Erik Fenstad

The well-known incompleteness results of Gödel assert that there is no recursively enumerable set of sentences of formalized first order arithmetic which entails all true statements of that theory. It is equally well known that by introducing sufficiently nonconstructive rules, such as the ω-rule of induction, completeness can be re-established.Starting from the work of Turing [4] Feferman in [1] developed another method, viz. the study of transfinite recursive progressions of theories, for closing the gap between Gödel (recursively enumerable sets of axioms yield incompleteness) and Tarski (number-theoretic truth is not arithmetically definable).


1958 ◽  
Vol 23 (4) ◽  
pp. 389-392 ◽  
Author(s):  
J. R. Shoenfield

In this paper we answer some of the questions left open in [2]. We use the terminology of [2]. In particular, a theory will be a formal system formulated within the first-order calculus with identity. A theory is identified with the set of Gödel numbers of the theorems of the theory. Thus Craig's theorem [1] asserts that a theory is axiomatizable if and only if it is recursively enumerable.In [2], Feferman showed that if A is any recursively enumerable set, then there is an axiomatizable theory T having the same degree of unsolvability as A. (This result was proved independently by D. B. Mumford.) We show in Theorem 2 that if A is not recursive, then T may be chosen essentially undecidable. This depends on Theorem 1, which is a result on recursively enumerable sets of some independent interest.Our second result, given in Theorem 3, gives sufficient conditions for a theory to be creative. These conditions are more general than those given by Feferman. In particular, they show that the system of Kreisel described in [2] is creative.


1970 ◽  
Vol 35 (4) ◽  
pp. 556-558
Author(s):  
E. M. Kleinberg

The enumeration, given a first-order sentence , of all sentences deducible from in the first-order predicate calculus, and the enumeration, given a non-negative integer n, of the recursively enumerable set Wn, are two well-known examples of effective processes. But are these processes really distinct? Indeed, might there not exist a Gödel numbering of the sentences of first-order logic such that for each n, if n is the number assigned to the sentence , then Wn is the set of numbers assigned to all sentences deducible from ? If this were the case, the first sort of enumeration would just be a particular instance of the second.


1978 ◽  
Vol 43 (1) ◽  
pp. 23-44 ◽  
Author(s):  
Nicolas D. Goodman

In this paper we introduce a new notion of realizability for intuitionistic arithmetic in all finite types. The notion seems to us to capture some of the intuition underlying both the recursive realizability of Kjeene [5] and the semantics of Kripke [7]. After some preliminaries of a syntactic and recursion-theoretic character in §1, we motivate and define our notion of realizability in §2. In §3 we prove a soundness theorem, and in §4 we apply that theorem to obtain new information about provability in some extensions of intuitionistic arithmetic in all finite types. In §5 we consider a special case of our general notion and prove a kind of reflection theorem for it. Finally, in §6, we consider a formalized version of our realizability notion and use it to give a new proof of the conservative extension theorem discussed in Goodman and Myhill [4] and proved in our [3]. (Apparently, a form of this result is also proved in Mine [13]. We have not seen this paper, but are relying on [12].) As a corollary, we obtain the following somewhat strengthened result: Let Σ be any extension of first-order intuitionistic arithmetic (HA) formalized in the language of HA. Let Σω be the theory obtained from Σ by adding functionals of finite type with intuitionistic logic, intensional identity, and axioms of choice and dependent choice at all types. Then Σω is a conservative extension of Σ. An interesting example of this theorem is obtained by taking Σ to be classical first-order arithmetic.


1963 ◽  
Vol 28 (1) ◽  
pp. 43-50 ◽  
Author(s):  
L. P. Belluce ◽  
C. C. Chang

This paper contains some results concerning the completeness of a first-order system of infinite valued logicThere are under consideration two distinct notions of completeness corresponding to the two notions of validity (see Definition 3) and strong validity (see Definition 4). Both notions of validity, whether based on the unit interval [0, 1] or based on linearly ordered MV-algebras, use the element 1 as the designated truth value. Originally, it was thought by many investigators in the field that one should be able to prove that the set of valid sentences is recursively enumerable. It was first proved by Rutledge in [9] that the set of valid sentences in the monadic first-order infinite valued logic is recursively enumerable.


1982 ◽  
Vol 47 (2) ◽  
pp. 423-435 ◽  
Author(s):  
James H. Schmerl ◽  
Stephen G. Simpson

The purpose of this paper is to study a formal system PA(Q2) of first order Peano arithmetic, PA, augmented by a Ramsey quantifier Q2 which binds two free variables. The intended meaning of Q2xx′φ(x, x′) is that there exists an infinite set X of natural numbers such that φ(a, a′) holds for all a, a′ Є X such that a ≠ a′. Such an X is called a witness set for Q2xx′φ(x, x′). Our results would not be affected by the addition of further Ramsey quantifiers Q3, Q4, …, Here of course the intended meaning of Qkx1 … xkφ(x1,…xk) is that there exists an infinite set X such that φ(a1…, ak) holds for all k-element subsets {a1, … ak} of X.Ramsey quantifiers were first introduced in a general model theoretic setting by Magidor and Malitz [13]. The system PA{Q2), or rather, a system essentially equivalent to it, was first defined and studied by Macintyre [12]. Some of Macintyre's results were obtained independently by Morgenstern [15]. The present paper is essentially self-contained, but all of our results have been directly inspired by those of Macintyre [12].After some preliminaries in §1, we begin in §2 by giving a new completeness proof for PA(Q2). A by-product of our proof is that for every regular uncountable cardinal k, every consistent extension of PA(Q2) has a k-like model in which all classes are definable. (By a class we mean a subset of the universe of the model, every initial segment of which is finite in the sense of the model.)


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 263
Author(s):  
Yuri N. Lovyagin ◽  
Nikita Yu. Lovyagin

The standard elementary number theory is not a finite axiomatic system due to the presence of the induction axiom scheme. Absence of a finite axiomatic system is not an obstacle for most tasks, but may be considered as imperfect since the induction is strongly associated with the presence of set theory external to the axiomatic system. Also in the case of logic approach to the artificial intelligence problems presence of a finite number of basic axioms and states is important. Axiomatic hyperrational analysis is the axiomatic system of hyperrational number field. The properties of hyperrational numbers and functions allow them to be used to model real numbers and functions of classical elementary mathematical analysis. However hyperrational analysis is based on well-known non-finite hyperarithmetic axiomatics. In the article we present a new finite first-order arithmetic theory designed to be the basis of the axiomatic hyperrational analysis and, as a consequence, mathematical analysis in general as a basis for all mathematical application including AI problems. It is shown that this axiomatics meet the requirements, i.e., it could be used as the basis of an axiomatic hyperrational analysis. The article in effect completes the foundation of axiomatic hyperrational analysis without calling in an arithmetic extension, since in the framework of the presented theory infinite numbers arise without invoking any new constants. The proposed system describes a class of numbers in which infinite numbers exist as natural objects of the theory itself. We also do not appeal to any “enveloping” set theory.


1976 ◽  
Vol 41 (3) ◽  
pp. 695-696 ◽  
Author(s):  
J. R. Shoenfield

In [3], Martin computed the degrees of certain classes of RE sets. To state the results succinctly, some notation is useful.If A is a set (of natural numbers), dg(A) is the (Turing) degree of A. If A is a class of sets, dg(A) = {dg(A): A ∈ A). Let M be the class of maximal sets, HHS the class of hyperhypersimple sets, and DS the class of dense simple sets. Martin showed that dg(M), dg(HHS), and dg(DS) are all equal to the set H of RE degrees a such that a′ = 0″.Let M* be the class of coinfinite RE sets having no superset in M; and define HHS* and DS* similarly. Martin showed that dg(DS*) = H. In [2], Lachlan showed (among other things) that dg(M*)⊆K, where K is the set of RE degrees a such that a″ > 0″. We will show that K ⊆ dg (HHS*). Since maximal sets are hyperhypersimple, this gives dg(M*) = dg (HHS*) = K.These results suggest a problem. In each case in which dg(A) has been calculated, the set of nonzero degrees in dg(A) is either H or K or the empty set or the set of all nonzero RE degrees. Is this always the case for natural classes A? Natural here might mean that A is invariant under all automorphisms of the lattice of RE sets; or that A is definable in the first-order theory of that lattice; or anything else which seems reasonable.


Sign in / Sign up

Export Citation Format

Share Document