Lichen communities in two old-growth pine (Pinus) forests

2014 ◽  
Vol 46 (5) ◽  
pp. 697-709 ◽  
Author(s):  
Christopher WAGNER ◽  
Lyndsay J. SCHRAM ◽  
Richard Troy McMULLIN ◽  
Shelley L. HUNT ◽  
Madhur ANAND

AbstractMany lichen species have specific environmental requirements for colonization. Old-growth forests contain microhabitats required by a particular suite of lichens. In Ontario, Canada, old-growth forests are increasingly uncommon and the lichen communities within some of these forests are not well known. To better understand the lichen communities that inhabit old-growth forests in the province, we examined the lichen biota on coarse woody debris (CWD) and trees in a red pine (Pinus resinosa) and a white pine (Pinus strobus) dominated stand in northern Ontario. Lichen diversity was assessed on different forms of CWD and trees in each forest. Lichen diversity did not differ significantly between CWD types in the red pine forest, but was significantly different in the white pine forest. There was no significant difference in lichen diversity amongst different decay stages of CWD in either forest. In both forests, lichen communities on stumps, logs, and snags differed from lichen communities present on trees. A variety of CWD types is important for overall lichen species richness in the red pine forest. Our results demonstrate to land managers that different types of old-growth forests are ecologically unique, even those dominated by tree species in the same genus. Management of an old-growth forest should suit its individual ecology.

2021 ◽  
Vol 4 ◽  
Author(s):  
Jeffrey Opoku-Nyame ◽  
Alain Leduc ◽  
Nicole J. Fenton

Clear cut harvest simplifies and eliminates old growth forest structure, negatively impacting biodiversity. Partial cut harvest has been hypothesized (1) to have less impact on biodiversity than clear cut harvest, and (2) to encourage old growth forest structures. Long-term studies are required to test this hypothesis as most studies are conducted soon after harvest. Using epixylic bryophytes as indicators, this study addresses this knowledge gap. Fourteen years after harvest, we examined changes in epixylic bryophyte community composition richness and traits, and their microhabitats (coarse woody debris characteristics and microclimate) along an unharvested, partial cuts and clear cuts harvest treatment in 30 permanent plots established in the boreal black spruce (Picea mariana) forests of northwestern Quebec, Canada. Our results were compared to those of an initial post-harvest study (year 5) and to a chronosequence of old growth forests to examine species changes over time and the similarity of bryophyte communities in partial cut and old growth forests. Coarse woody debris (CWD) volume by decay class varied among harvest treatments with partial cuts and clear cuts recording lower volumes of early decay CWD. The epixylic community was richer in partial cuts than in mature unharvested forests and clear cuts. In addition, species richness and overall abundance doubled in partial and clear cuts between years 5 and 14. Species composition also differed among treatments between years 5 and 14. Furthermore, conditions in partial cut stands supported small, drought sensitive, and old growth confined species that are threatened by conditions in clear cut stands. Lastly, over time, species composition in partial cuts became more similar to old growth forests. Partial cuts reduced harvest impacts by continuing to provide favorable microhabitat conditions that support epixylic bryophytes. Also, partial cut harvest has the potential to encourage old growth species assemblages, which has been a major concern for biodiversity conservation in managed forest landscapes. Our findings support the promotion of partial cut harvest as an effective strategy to achieve species and habitat conservation goals.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Giorgio Brunialti ◽  
Paolo Giordani ◽  
Sonia Ravera ◽  
Luisa Frati

(1) Research Highlights: The work studied the beta diversity patterns of epiphytic lichens as a function of their reproductive strategies in old-growth and non-old growth forests from the Mediterranean area. (2) Background and Objectives: The reproductive strategies of lichens can drive the dispersal and distribution of species assemblages in forest ecosystems. To further investigate this issue, we analyzed data on epiphytic lichen diversity collected from old-growth and non-old growth forest sites (36 plots) located in Cilento National Park (South Italy). Our working hypothesis was that the dispersal abilities due to the different reproductive strategies drove species beta diversity depending on forest age and continuity. We expected a high turnover for sexually reproducing species and high nestedness for vegetative ones. We also considered the relationship between forest continuity and beta diversity in terms of species rarity. (3) Materials and Methods: we used the Bray–Curtis index of dissimilarity to partition lichen diversity into two components of beta diversity for different subsets (type of forest, reproductive strategy, and species rarity). (4) Results: The two forest types shared most of the common species and did not show significant differences in alpha and gamma diversity. The turnover of specific abundance was the main component of beta diversity, and was significantly greater for sexually reproducing species as compared to vegetative ones. These latter species had also the least turnover and greater nestedness in old-growth forests. Rare species showed higher turnover than common ones. (5) Conclusions: Our results suggest that sexually reproducing lichen species always have high turnover, while vegetative species tend to form nested assemblages, especially in old-growth forests. The rarity level contributes to the species turnover in lichen communities. Contrary to what one might expect, the differences between old-growth and non-old growth forests are not strong.


Oryx ◽  
2013 ◽  
Vol 47 (4) ◽  
pp. 553-560 ◽  
Author(s):  
Jonathan C. Slaght ◽  
Sergei G. Surmach ◽  
R.J. Gutiérrez

AbstractConservation efforts for Blakiston's fish owl Bubo blakistoni in Russia are limited, partly because habitat use by these rare owls is poorly known. We therefore studied nesting and foraging habitat characteristics of Blakiston's fish owls in Primorye, Russia. We sampled habitat at 14 nest sites, 12 nest stand sites and 13 random sites; we also sampled rivers within 14 fish owl home ranges across our 20,213 km2 study area. We found that large old trees and riparian old-growth forest were the primary characteristics of nest and foraging sites, respectively. Large trees were probably used as nest sites because they have cavities large enough to accommodate these birds. Big trees are also important because they are primary sources of large woody debris in rivers, which enhances suitable habitat for salmon, the owl's primary prey. Based on habitat characteristics, nest sites were correctly distinguished from random sites 74% (Kappa = 0.48) of the time, nest stands from random sites 56% (Kappa = 0.12) of the time, and used sites from available foraging sites 68% (Kappa = 0.36) of the time. The management and conservation of old-growth forests is essential for sustaining this species because they are central to the owls' nesting and foraging behaviour. Moreover, conservation of these forests sustains habitat for many other species.


2014 ◽  
Vol 37 (1-2) ◽  
pp. 77-92 ◽  
Author(s):  
Krystyna Czyżewska ◽  
Stanisław Cieśliński ◽  
Jurga Motiejūnaitė ◽  
Katarzyna Kolanko

Budzisk nature reserve belongs to an old-growth forest Knyszyńska Large Forest complex. During the present study. 185 taxa of lichens, lichenicolous and saprobic fungi were recorded in the reserve. Seventy seven taxa of them are red-listed in Poland and NE Poland or are indicators of an old-growth forest. Consequently, the Budzisk reserve can be considered to be a biocentre of a diversity of lichens especially those characterislic of old-growth forests in NE Poland. During the study, the following rare and noteworthy species of lichens and allied fungi were found: <i>Absconditella lignicola, Acrocordia cavata, Biatora ocelliformis, Fellhanera gyrophorica, Fellhaneropsis vezdae, Micarea hedlundii, Mycocalicium subtile, Pertusaria pupillaris, Phaeopyxis punctum</i>, and <i>Stenocybe pullatula</i>. They have been recorted for the Knyszńska Large Forest for the first lime.


2016 ◽  
Author(s):  
Geshere Abdisa Gurmesa ◽  
Xiankai Lu ◽  
Per Gundersen ◽  
Yunting Fang ◽  
Qinggong Mao ◽  
...  

Abstract. Natural abundance of 15N (δ15N) in plants and soils can provide integrated information on ecosystem nitrogen (N) cycling, but it has not been well tested in warm and humid sub-tropical forests. In this study, we examined the measurement of δ15N for its ability to assess changes in N cycling due to increased N deposition in an old-growth broadleaved forest and a secondary pine forest in a high N deposition area in southern China. We measured δ15N of inorganic N in input and output fluxes under ambient N deposition, and N concentration (N %) and δ15N of major ecosystem compartments under ambient and after decadal N addition at 50 kg N ha−1 yr−1. Our results showed that the N deposition was δ15N-depleted (−12 ‰) mainly due to high input of depleted NH4&amp;plus;-N. Plant leafs in both forest were also δ15N-depleted (−4 to −6 ‰). The old-growth forest had higher plant and soil N %, and was more 15N-enriched in most ecosystem compartments relative to the pine forest. Nitrogen addition did not significantly affect N % in both forests, indicating that the ecosystem pools are already N-rich. Soil δ15N was not changed significantly by the N addition in both forests. However, the N addition significantly increased the δ15N of plants toward the 15N signature of the added N (~ 0 ‰), indicating incorporation of added N into plants. Thus, plant δ15N was sensitive to ecosystem N input manipulation although N % was unchanged in these N-rich sub-tropical forests. We interpret the depleted δ15N values of plants as an imprint from the high and δ15N-depleted N deposition. The signal from the input (deposition or N addition) may override the enrichment effects of fractionation during the steps of N cycling that are observed in most warm and humid forests. Thus, interpretation of ecosystem δ15N values from high N deposition regions need to include data on the deposition δ15N signal.


2021 ◽  
Vol 4 ◽  
Author(s):  
Maxence Martin ◽  
Pierre Grondin ◽  
Marie-Claude Lambert ◽  
Yves Bergeron ◽  
Hubert Morin

Large primary forest residuals can still be found in boreal landscapes. Their areas are however shrinking rapidly due to anthropogenic activities, in particular industrial-scale forestry. The impacts of logging activities on primary boreal forests may also strongly differ from those of wildfires, the dominant stand-replacing natural disturbance in these forests. Since industrial-scale forestry is driven by economic motives, there is a risk that stands of higher economic value will be primarily harvested, thus threatening habitats, and functions related to these forests. Hence, the objective of this study was to identify the main attributes differentiating burned and logged stands prior to disturbance in boreal forests. The study territory lies in the coniferous and closed-canopy boreal forest in Québec, Canada, where industrial-scale logging and wildfire are the two main stand-replacing disturbances. Based on Québec government inventories of primary forests, we identified 427 transects containing about 5.5 circular field plots/transect that were burned or logged shortly after being surveyed, between 1985 and 2016. Comparative analysis of the main structural and environmental attributes of these transects highlighted the strong divergence in the impact of fire and harvesting on primary boreal forests. Overall, logging activities mainly harvested forests with the highest economic value, while most burned stands were low to moderately productive or recently disturbed. These results raise concerns about the resistance and resilience of remnant primary forests within managed areas, particularly in a context of disturbance amplification due to climate change. Moreover, the majority of the stands studied were old-growth forests, characterized by a high ecological value but also highly threatened by anthropogenic disturbances. A loss in the diversity and functionality of primary forests, and particularly the old-growth forests, therefore adds to the current issues related to these ecosystems. Since 2013, the study area is under ecosystem-based management, which implies that there have been marked changes in forestry practices. Complementary research will be necessary to assess the capacity of ecosystem-based management to address the challenges identified in our study.


2020 ◽  
Vol 50 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Maxence Martin ◽  
Nicole J. Fenton ◽  
Hubert Morin

The erosion of old-growth forests in boreal managed landscapes is a major issue currently faced by forest managers; however, resolving this problem requires accurate surveys. The intention of our study was to determine if historic operational aerial forest surveys accurately identified boreal old-growth forests in Quebec, Canada. We first compared stand successional stages (even-aged vs. old-growth) in two aerial surveys performed in 1968 (preindustrial aerial survey) and 2007 (modern aerial survey) on the same 2200 km2 territory. Second, we evaluated the accuracy of the modern aerial survey by comparing its results with those of 74 field plots sampled in the study territory between 2014 and 2016. The two aerial surveys differed significantly; 80.8% of the undisturbed stands that were identified as “old-growth” in the preindustrial survey were classified as “even-aged” in the modern survey, and 60% of the stands identified as “old-growth” by field sampling were also erroneously identified as “even-aged” by the modern aerial survey. The scarcity of obvious old-growth attributes in boreal old-growth forests, as well as poorly adapted modern aerial survey criteria (i.e., criteria requiring high vertical stratification and significant changes in tree species composition along forest succession), were the main factors explaining these errors. It is therefore likely that most of Quebec’s boreal old-growth forests are currently not recognized as such in forest inventories, challenging the efficacy of sustainable forest management policies.


2003 ◽  
Vol 11 (S1) ◽  
pp. S135-S157 ◽  
Author(s):  
M C Feller

This paper synthesizes data extracted from the literature and data collected in various studies by the author on the quantity, characteristics, and functional importance of coarse woody debris (CWD) in the old-growth forests of British Columbia (B.C.). There is little agreement in the literature about the minimum diameter of CWD or the number of decay classes recognized. In western North America, five decay classes are commonly used, but recent studies suggest fewer decay classes are preferable. Comparisons among decay classes and biogeoclimatic zones and subzones in B.C. reveal that quantities and volumes are greatest (up to approximately 60 kg/m2 and approximately 1800 m3/ha, respectively), and CWD persists the longest (sometimes in excess of 1000 years) in the Coastal Western Hemlock (CWH) biogeoclimatic zone. The quantity and ground cover of CWD increase with forest productivity. Persistence of CWD has varied from less than 100 to over 800 years in two coastal (CWH and Mountain Hemlock (MH)) and three interior (Interior Douglas-fir (IDF), Interior Cedar–Hemlock (ICH), and Engelmann Spruce – Subalpine Fir (ESSF)) biogeoclimatic zones. Trends in CWD quantity with forest age in managed coastal B.C. forests suggest a U-shaped curve, with greater quantities occurring in recent cutovers than in old-growth forests, and lowest quantities occurring in middle-aged forests. This may be the normal trend in CWD with forest age, with departures from this trend resulting from disturbance- or environment-specific factors. Relatively large amounts of data exist on the characteristics of CWD in the CWH, IDF, ICH, ESSF, and Boreal White and Black Spruce (BWBS) biogeoclimatic zones, but such data for the Coastal Douglas-fir, Sub-Boreal Pine–Spruce, Sub-Boreal Spruce (SBS), and Spruce–Willow–Birch biogeoclimatic zones appear relatively sparse. There have been few studies of the functional role of CWD in B.C. forests, but those studies that have been completed indicate that CWD is an important habitat component for some plant and animal species. A total of 169 plant species, including >95% of all lichens and liverworts, were found to grow on CWD in old-growth forests in the CWH, MH, IDF, ICH, and ESSF biogeoclimatic zones. One third of these species were restricted to CWD. Studies in several biogeoclimatic zones have found that CWD provided preferred habitat for and was associated with higher populations of some small animal species, such as shrews, some voles, and some salamanders, in old-growth forests, but the effects varied with species and biogeoclimatic zone. The nutrient cycling role of CWD is not yet well known, but it currently appears to be relatively insignificant in B.C. old-growth forests. Although it has been considered that CWD could increase mineral soil acidification and eluviation, no evidence for this was found in a study of the CWH, MH, IDF, ICH, ESSF, BWBS, and SBS biogeoclimatic zones. Future studies of the functional role of CWD should consider both scale (square metre vs. hectare) and temporal (changes in CWD with forest age) issues, as studies including these are sparse and both may be important. Key words: biogeoclimatic zones, British Columbia, coarse woody debris, old-growth forests.


2020 ◽  
Author(s):  
Robert T. Leverett ◽  
Susan A. Masino ◽  
William R. Moomaw

AbstractPre-settlement New England was heavily forested, with some trees exceeding 2 m in diameter. New England’s forests have regrown since farm abandonment and represent what is arguably the most successful regional reforestation on record; the region has recently been identified as part of the “Global Safety Net.” Remnants and groves of primary “old-growth” forest demonstrate that native tree species can live for hundreds of years and continue to add to the biomass and structural and ecological complexity of forests. Forests are an essential natural climate solution for accumulating and storing atmospheric CO2, and some studies emphasize young, fast-growing trees and forests whereas others highlight high carbon storage and accumulation rates in old trees and intact forests. To address this question directly within New England we leveraged long-term, accurate field measurements along with volume modeling of individual trees and intact stands of eastern white pines (Pinus strobus) and compared our results to models developed by the U.S. Forest Service. Our major findings complement, extend, and clarify previous findings and are three-fold: 1) intact eastern white pine forests continue to sequester carbon and store high cumulative carbon above ground; 2) large trees dominate above-ground carbon storage and can sequester significant amounts of carbon for hundreds of years; 3) productive pine stands can continue to sequester high amounts of carbon for well over 150 years. Because the next decades are critical in addressing the climate crisis, and the vast majority of New England forests are less than 100 years old, and can at least double their cumulative carbon, a major implication of this work is that maintaining and accumulating maximal carbon in existing forests – proforestation - is a powerful near-term regional climate solution. Furthermore, old and old-growth forests are rare, complex and highly dynamic and biodiverse, and dedication of some forests to proforestation will also protect natural selection, ecosystem integrity and full native biodiversity long-term. In sum, strategic policies that grow and protect existing forests in New England will optimize a proven, low cost, natural climate solution for meeting climate and biodiversity goals now and in the critical coming decades.


Sign in / Sign up

Export Citation Format

Share Document